Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpfset Unicode version

Theorem tgrpfset 31226
Description: The translation group maps for a lattice  K. (Contributed by NM, 5-Jun-2013.)
Hypothesis
Ref Expression
tgrpset.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
tgrpfset  |-  ( K  e.  V  ->  ( TGrp `  K )  =  ( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } ) )
Distinct variable groups:    w, H    f, g, w, K
Allowed substitution hints:    H( f, g)    V( w, f, g)

Proof of Theorem tgrpfset
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 2924 . 2  |-  ( K  e.  V  ->  K  e.  _V )
2 fveq2 5687 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 tgrpset.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2454 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 5687 . . . . . . 7  |-  ( k  =  K  ->  ( LTrn `  k )  =  ( LTrn `  K
) )
65fveq1d 5689 . . . . . 6  |-  ( k  =  K  ->  (
( LTrn `  k ) `  w )  =  ( ( LTrn `  K
) `  w )
)
76opeq2d 3951 . . . . 5  |-  ( k  =  K  ->  <. ( Base `  ndx ) ,  ( ( LTrn `  k
) `  w ) >.  =  <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. )
8 eqidd 2405 . . . . . . 7  |-  ( k  =  K  ->  (
f  o.  g )  =  ( f  o.  g ) )
96, 6, 8mpt2eq123dv 6095 . . . . . 6  |-  ( k  =  K  ->  (
f  e.  ( (
LTrn `  k ) `  w ) ,  g  e.  ( ( LTrn `  k ) `  w
)  |->  ( f  o.  g ) )  =  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) ) )
109opeq2d 3951 . . . . 5  |-  ( k  =  K  ->  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  k
) `  w ) ,  g  e.  (
( LTrn `  k ) `  w )  |->  ( f  o.  g ) )
>.  =  <. ( +g  ` 
ndx ) ,  ( f  e.  ( (
LTrn `  K ) `  w ) ,  g  e.  ( ( LTrn `  K ) `  w
)  |->  ( f  o.  g ) ) >.
)
117, 10preq12d 3851 . . . 4  |-  ( k  =  K  ->  { <. (
Base `  ndx ) ,  ( ( LTrn `  k
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  k
) `  w ) ,  g  e.  (
( LTrn `  k ) `  w )  |->  ( f  o.  g ) )
>. }  =  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } )
124, 11mpteq12dv 4247 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  { <. (
Base `  ndx ) ,  ( ( LTrn `  k
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  k
) `  w ) ,  g  e.  (
( LTrn `  k ) `  w )  |->  ( f  o.  g ) )
>. } )  =  ( w  e.  H  |->  {
<. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } ) )
13 df-tgrp 31225 . . 3  |-  TGrp  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  {
<. ( Base `  ndx ) ,  ( ( LTrn `  k ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  k
) `  w ) ,  g  e.  (
( LTrn `  k ) `  w )  |->  ( f  o.  g ) )
>. } ) )
14 fvex 5701 . . . . 5  |-  ( LHyp `  K )  e.  _V
153, 14eqeltri 2474 . . . 4  |-  H  e. 
_V
1615mptex 5925 . . 3  |-  ( w  e.  H  |->  { <. (
Base `  ndx ) ,  ( ( LTrn `  K
) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } )  e.  _V
1712, 13, 16fvmpt 5765 . 2  |-  ( K  e.  _V  ->  ( TGrp `  K )  =  ( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } ) )
181, 17syl 16 1  |-  ( K  e.  V  ->  ( TGrp `  K )  =  ( w  e.  H  |->  { <. ( Base `  ndx ) ,  ( ( LTrn `  K ) `  w ) >. ,  <. ( +g  `  ndx ) ,  ( f  e.  ( ( LTrn `  K
) `  w ) ,  g  e.  (
( LTrn `  K ) `  w )  |->  ( f  o.  g ) )
>. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   _Vcvv 2916   {cpr 3775   <.cop 3777    e. cmpt 4226    o. ccom 4841   ` cfv 5413    e. cmpt2 6042   ndxcnx 13421   Basecbs 13424   +g cplusg 13484   LHypclh 30466   LTrncltrn 30583   TGrpctgrp 31224
This theorem is referenced by:  tgrpset  31227
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pr 4363
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-oprab 6044  df-mpt2 6045  df-tgrp 31225
  Copyright terms: Public domain W3C validator