Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpbase Structured version   Unicode version

Theorem tgrpbase 36888
Description: The base set of the translation group is the set of all translations (for a fiducial co-atom  W). (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
tgrpset.h  |-  H  =  ( LHyp `  K
)
tgrpset.t  |-  T  =  ( ( LTrn `  K
) `  W )
tgrpset.g  |-  G  =  ( ( TGrp `  K
) `  W )
tgrp.c  |-  C  =  ( Base `  G
)
Assertion
Ref Expression
tgrpbase  |-  ( ( K  e.  V  /\  W  e.  H )  ->  C  =  T )

Proof of Theorem tgrpbase
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgrpset.h . . . 4  |-  H  =  ( LHyp `  K
)
2 tgrpset.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
3 tgrpset.g . . . 4  |-  G  =  ( ( TGrp `  K
) `  W )
41, 2, 3tgrpset 36887 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  G  =  { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. } )
54fveq2d 5852 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( Base `  G
)  =  ( Base `  { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. } ) )
6 tgrp.c . 2  |-  C  =  ( Base `  G
)
7 fvex 5858 . . . 4  |-  ( (
LTrn `  K ) `  W )  e.  _V
82, 7eqeltri 2538 . . 3  |-  T  e. 
_V
9 eqid 2454 . . . 4  |-  { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. }  =  { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. }
109grpbase 14831 . . 3  |-  ( T  e.  _V  ->  T  =  ( Base `  { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. } ) )
118, 10ax-mp 5 . 2  |-  T  =  ( Base `  { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. } )
125, 6, 113eqtr4g 2520 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  C  =  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1398    e. wcel 1823   _Vcvv 3106   {cpr 4018   <.cop 4022    o. ccom 4992   ` cfv 5570    |-> cmpt2 6272   ndxcnx 14716   Basecbs 14719   +g cplusg 14787   LHypclh 36124   LTrncltrn 36241   TGrpctgrp 36884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-struct 14721  df-ndx 14722  df-slot 14723  df-base 14724  df-plusg 14800  df-tgrp 36885
This theorem is referenced by:  tgrpgrplem  36891  tgrpabl  36893
  Copyright terms: Public domain W3C validator