Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpbase Structured version   Unicode version

Theorem tgrpbase 34693
Description: The base set of the translation group is the set of all translations (for a fiducial co-atom  W). (Contributed by NM, 5-Jun-2013.)
Hypotheses
Ref Expression
tgrpset.h  |-  H  =  ( LHyp `  K
)
tgrpset.t  |-  T  =  ( ( LTrn `  K
) `  W )
tgrpset.g  |-  G  =  ( ( TGrp `  K
) `  W )
tgrp.c  |-  C  =  ( Base `  G
)
Assertion
Ref Expression
tgrpbase  |-  ( ( K  e.  V  /\  W  e.  H )  ->  C  =  T )

Proof of Theorem tgrpbase
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgrpset.h . . . 4  |-  H  =  ( LHyp `  K
)
2 tgrpset.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
3 tgrpset.g . . . 4  |-  G  =  ( ( TGrp `  K
) `  W )
41, 2, 3tgrpset 34692 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  G  =  { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. } )
54fveq2d 5790 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( Base `  G
)  =  ( Base `  { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. } ) )
6 tgrp.c . 2  |-  C  =  ( Base `  G
)
7 fvex 5796 . . . 4  |-  ( (
LTrn `  K ) `  W )  e.  _V
82, 7eqeltri 2533 . . 3  |-  T  e. 
_V
9 eqid 2451 . . . 4  |-  { <. (
Base `  ndx ) ,  T >. ,  <. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g
) ) >. }  =  { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. }
109grpbase 14377 . . 3  |-  ( T  e.  _V  ->  T  =  ( Base `  { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. } ) )
118, 10ax-mp 5 . 2  |-  T  =  ( Base `  { <. ( Base `  ndx ) ,  T >. , 
<. ( +g  `  ndx ) ,  ( f  e.  T ,  g  e.  T  |->  ( f  o.  g ) ) >. } )
125, 6, 113eqtr4g 2516 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  C  =  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3065   {cpr 3974   <.cop 3978    o. ccom 4939   ` cfv 5513    |-> cmpt2 6189   ndxcnx 14270   Basecbs 14273   +g cplusg 14337   LHypclh 33931   LTrncltrn 34048   TGrpctgrp 34689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4498  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469  ax-cnex 9436  ax-resscn 9437  ax-1cn 9438  ax-icn 9439  ax-addcl 9440  ax-addrcl 9441  ax-mulcl 9442  ax-mulrcl 9443  ax-mulcom 9444  ax-addass 9445  ax-mulass 9446  ax-distr 9447  ax-i2m1 9448  ax-1ne0 9449  ax-1rid 9450  ax-rnegex 9451  ax-rrecex 9452  ax-cnre 9453  ax-pre-lttri 9454  ax-pre-lttrn 9455  ax-pre-ltadd 9456  ax-pre-mulgt0 9457
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-nel 2645  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-pss 3439  df-nul 3733  df-if 3887  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4187  df-int 4224  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-tr 4481  df-eprel 4727  df-id 4731  df-po 4736  df-so 4737  df-fr 4774  df-we 4776  df-ord 4817  df-on 4818  df-lim 4819  df-suc 4820  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6148  df-ov 6190  df-oprab 6191  df-mpt2 6192  df-om 6574  df-1st 6674  df-2nd 6675  df-recs 6929  df-rdg 6963  df-1o 7017  df-oadd 7021  df-er 7198  df-en 7408  df-dom 7409  df-sdom 7410  df-fin 7411  df-pnf 9518  df-mnf 9519  df-xr 9520  df-ltxr 9521  df-le 9522  df-sub 9695  df-neg 9696  df-nn 10421  df-2 10478  df-n0 10678  df-z 10745  df-uz 10960  df-fz 11536  df-struct 14275  df-ndx 14276  df-slot 14277  df-base 14278  df-plusg 14350  df-tgrp 34690
This theorem is referenced by:  tgrpgrplem  34696  tgrpabl  34698
  Copyright terms: Public domain W3C validator