MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgrest Unicode version

Theorem tgrest 17177
Description: A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
tgrest  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( topGen `  ( Bt  A
) )  =  ( ( topGen `  B )t  A
) )

Proof of Theorem tgrest
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6065 . . . . 5  |-  ( Bt  A )  e.  _V
2 eltg3 16982 . . . . 5  |-  ( ( Bt  A )  e.  _V  ->  ( x  e.  (
topGen `  ( Bt  A ) )  <->  E. y ( y 
C_  ( Bt  A )  /\  x  =  U. y ) ) )
31, 2ax-mp 8 . . . 4  |-  ( x  e.  ( topGen `  ( Bt  A ) )  <->  E. y
( y  C_  ( Bt  A )  /\  x  =  U. y ) )
4 simpll 731 . . . . . . . . 9  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  y  C_  ( Bt  A ) )  ->  B  e.  V )
5 funmpt 5448 . . . . . . . . . 10  |-  Fun  (
x  e.  B  |->  ( x  i^i  A ) )
65a1i 11 . . . . . . . . 9  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  y  C_  ( Bt  A ) )  ->  Fun  ( x  e.  B  |->  ( x  i^i  A
) ) )
7 restval 13609 . . . . . . . . . . . 12  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( Bt  A )  =  ran  ( x  e.  B  |->  ( x  i^i  A
) ) )
87sseq2d 3336 . . . . . . . . . . 11  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( y  C_  ( Bt  A )  <->  y  C_  ran  ( x  e.  B  |->  ( x  i^i  A
) ) ) )
98biimpa 471 . . . . . . . . . 10  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  y  C_  ( Bt  A ) )  -> 
y  C_  ran  ( x  e.  B  |->  ( x  i^i  A ) ) )
10 vex 2919 . . . . . . . . . . . . 13  |-  x  e. 
_V
1110inex1 4304 . . . . . . . . . . . 12  |-  ( x  i^i  A )  e. 
_V
1211rgenw 2733 . . . . . . . . . . 11  |-  A. x  e.  B  ( x  i^i  A )  e.  _V
13 eqid 2404 . . . . . . . . . . . 12  |-  ( x  e.  B  |->  ( x  i^i  A ) )  =  ( x  e.  B  |->  ( x  i^i 
A ) )
1413fnmpt 5530 . . . . . . . . . . 11  |-  ( A. x  e.  B  (
x  i^i  A )  e.  _V  ->  ( x  e.  B  |->  ( x  i^i  A ) )  Fn  B )
15 fnima 5522 . . . . . . . . . . 11  |-  ( ( x  e.  B  |->  ( x  i^i  A ) )  Fn  B  -> 
( ( x  e.  B  |->  ( x  i^i 
A ) ) " B )  =  ran  ( x  e.  B  |->  ( x  i^i  A
) ) )
1612, 14, 15mp2b 10 . . . . . . . . . 10  |-  ( ( x  e.  B  |->  ( x  i^i  A ) ) " B )  =  ran  ( x  e.  B  |->  ( x  i^i  A ) )
179, 16syl6sseqr 3355 . . . . . . . . 9  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  y  C_  ( Bt  A ) )  -> 
y  C_  ( (
x  e.  B  |->  ( x  i^i  A ) ) " B ) )
18 ssimaexg 5748 . . . . . . . . 9  |-  ( ( B  e.  V  /\  Fun  ( x  e.  B  |->  ( x  i^i  A
) )  /\  y  C_  ( ( x  e.  B  |->  ( x  i^i 
A ) ) " B ) )  ->  E. z ( z  C_  B  /\  y  =  ( ( x  e.  B  |->  ( x  i^i  A
) ) " z
) ) )
194, 6, 17, 18syl3anc 1184 . . . . . . . 8  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  y  C_  ( Bt  A ) )  ->  E. z ( z  C_  B  /\  y  =  ( ( x  e.  B  |->  ( x  i^i  A
) ) " z
) ) )
20 df-ima 4850 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  B  |->  ( x  i^i  A ) ) " z )  =  ran  ( ( x  e.  B  |->  ( x  i^i  A ) )  |`  z )
21 resmpt 5150 . . . . . . . . . . . . . . . . . . 19  |-  ( z 
C_  B  ->  (
( x  e.  B  |->  ( x  i^i  A
) )  |`  z
)  =  ( x  e.  z  |->  ( x  i^i  A ) ) )
2221adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  (
( x  e.  B  |->  ( x  i^i  A
) )  |`  z
)  =  ( x  e.  z  |->  ( x  i^i  A ) ) )
2322rneqd 5056 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  ran  ( ( x  e.  B  |->  ( x  i^i 
A ) )  |`  z )  =  ran  ( x  e.  z  |->  ( x  i^i  A
) ) )
2420, 23syl5eq 2448 . . . . . . . . . . . . . . . 16  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  (
( x  e.  B  |->  ( x  i^i  A
) ) " z
)  =  ran  (
x  e.  z  |->  ( x  i^i  A ) ) )
2524unieqd 3986 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  U. (
( x  e.  B  |->  ( x  i^i  A
) ) " z
)  =  U. ran  ( x  e.  z  |->  ( x  i^i  A
) ) )
2611dfiun3 5083 . . . . . . . . . . . . . . 15  |-  U_ x  e.  z  ( x  i^i  A )  =  U. ran  ( x  e.  z 
|->  ( x  i^i  A
) )
2725, 26syl6eqr 2454 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  U. (
( x  e.  B  |->  ( x  i^i  A
) ) " z
)  =  U_ x  e.  z  ( x  i^i  A ) )
28 iunin1 4116 . . . . . . . . . . . . . 14  |-  U_ x  e.  z  ( x  i^i  A )  =  (
U_ x  e.  z  x  i^i  A )
2927, 28syl6eq 2452 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  U. (
( x  e.  B  |->  ( x  i^i  A
) ) " z
)  =  ( U_ x  e.  z  x  i^i  A ) )
30 fvex 5701 . . . . . . . . . . . . . . 15  |-  ( topGen `  B )  e.  _V
3130a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  ( topGen `
 B )  e. 
_V )
32 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  V  /\  A  e.  W )  ->  A  e.  W )
3332adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  A  e.  W )
34 uniiun 4104 . . . . . . . . . . . . . . . 16  |-  U. z  =  U_ x  e.  z  x
35 eltg3i 16981 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  V  /\  z  C_  B )  ->  U. z  e.  ( topGen `
 B ) )
3634, 35syl5eqelr 2489 . . . . . . . . . . . . . . 15  |-  ( ( B  e.  V  /\  z  C_  B )  ->  U_ x  e.  z  x  e.  ( topGen `  B ) )
3736adantlr 696 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  U_ x  e.  z  x  e.  ( topGen `  B )
)
38 elrestr 13611 . . . . . . . . . . . . . 14  |-  ( ( ( topGen `  B )  e.  _V  /\  A  e.  W  /\  U_ x  e.  z  x  e.  ( topGen `  B )
)  ->  ( U_ x  e.  z  x  i^i  A )  e.  ( ( topGen `  B )t  A
) )
3931, 33, 37, 38syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  ( U_ x  e.  z  x  i^i  A )  e.  ( ( topGen `  B
)t 
A ) )
4029, 39eqeltrd 2478 . . . . . . . . . . . 12  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  U. (
( x  e.  B  |->  ( x  i^i  A
) ) " z
)  e.  ( (
topGen `  B )t  A ) )
41 unieq 3984 . . . . . . . . . . . . 13  |-  ( y  =  ( ( x  e.  B  |->  ( x  i^i  A ) )
" z )  ->  U. y  =  U. ( ( x  e.  B  |->  ( x  i^i 
A ) ) "
z ) )
4241eleq1d 2470 . . . . . . . . . . . 12  |-  ( y  =  ( ( x  e.  B  |->  ( x  i^i  A ) )
" z )  -> 
( U. y  e.  ( ( topGen `  B
)t 
A )  <->  U. (
( x  e.  B  |->  ( x  i^i  A
) ) " z
)  e.  ( (
topGen `  B )t  A ) ) )
4340, 42syl5ibrcom 214 . . . . . . . . . . 11  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  (
y  =  ( ( x  e.  B  |->  ( x  i^i  A ) ) " z )  ->  U. y  e.  ( ( topGen `  B )t  A
) ) )
4443expimpd 587 . . . . . . . . . 10  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( ( z  C_  B  /\  y  =  ( ( x  e.  B  |->  ( x  i^i  A
) ) " z
) )  ->  U. y  e.  ( ( topGen `  B
)t 
A ) ) )
4544exlimdv 1643 . . . . . . . . 9  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( E. z ( z  C_  B  /\  y  =  ( (
x  e.  B  |->  ( x  i^i  A ) ) " z ) )  ->  U. y  e.  ( ( topGen `  B
)t 
A ) ) )
4645adantr 452 . . . . . . . 8  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  y  C_  ( Bt  A ) )  -> 
( E. z ( z  C_  B  /\  y  =  ( (
x  e.  B  |->  ( x  i^i  A ) ) " z ) )  ->  U. y  e.  ( ( topGen `  B
)t 
A ) ) )
4719, 46mpd 15 . . . . . . 7  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  y  C_  ( Bt  A ) )  ->  U. y  e.  (
( topGen `  B )t  A
) )
48 eleq1 2464 . . . . . . 7  |-  ( x  =  U. y  -> 
( x  e.  ( ( topGen `  B )t  A
)  <->  U. y  e.  ( ( topGen `  B )t  A
) ) )
4947, 48syl5ibrcom 214 . . . . . 6  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  y  C_  ( Bt  A ) )  -> 
( x  =  U. y  ->  x  e.  ( ( topGen `  B )t  A
) ) )
5049expimpd 587 . . . . 5  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( ( y  C_  ( Bt  A )  /\  x  =  U. y )  ->  x  e.  ( ( topGen `
 B )t  A ) ) )
5150exlimdv 1643 . . . 4  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( E. y ( y  C_  ( Bt  A
)  /\  x  =  U. y )  ->  x  e.  ( ( topGen `  B
)t 
A ) ) )
523, 51syl5bi 209 . . 3  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( x  e.  (
topGen `  ( Bt  A ) )  ->  x  e.  ( ( topGen `  B
)t 
A ) ) )
5352ssrdv 3314 . 2  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( topGen `  ( Bt  A
) )  C_  (
( topGen `  B )t  A
) )
54 restval 13609 . . . 4  |-  ( ( ( topGen `  B )  e.  _V  /\  A  e.  W )  ->  (
( topGen `  B )t  A
)  =  ran  (
w  e.  ( topGen `  B )  |->  ( w  i^i  A ) ) )
5530, 32, 54sylancr 645 . . 3  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( ( topGen `  B
)t 
A )  =  ran  ( w  e.  ( topGen `
 B )  |->  ( w  i^i  A ) ) )
56 eltg3 16982 . . . . . . . 8  |-  ( B  e.  V  ->  (
w  e.  ( topGen `  B )  <->  E. z
( z  C_  B  /\  w  =  U. z ) ) )
5756adantr 452 . . . . . . 7  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( w  e.  (
topGen `  B )  <->  E. z
( z  C_  B  /\  w  =  U. z ) ) )
5834ineq1i 3498 . . . . . . . . . . . 12  |-  ( U. z  i^i  A )  =  ( U_ x  e.  z  x  i^i  A
)
5958, 28eqtr4i 2427 . . . . . . . . . . 11  |-  ( U. z  i^i  A )  = 
U_ x  e.  z  ( x  i^i  A
)
60 simplll 735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  V  /\  A  e.  W )  /\  z  C_  B )  /\  x  e.  z )  ->  B  e.  V )
61 simpllr 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  V  /\  A  e.  W )  /\  z  C_  B )  /\  x  e.  z )  ->  A  e.  W )
62 simpr 448 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  z  C_  B )
6362sselda 3308 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  V  /\  A  e.  W )  /\  z  C_  B )  /\  x  e.  z )  ->  x  e.  B )
64 elrestr 13611 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  V  /\  A  e.  W  /\  x  e.  B )  ->  ( x  i^i  A
)  e.  ( Bt  A ) )
6560, 61, 63, 64syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  V  /\  A  e.  W )  /\  z  C_  B )  /\  x  e.  z )  ->  (
x  i^i  A )  e.  ( Bt  A ) )
66 eqid 2404 . . . . . . . . . . . . . . 15  |-  ( x  e.  z  |->  ( x  i^i  A ) )  =  ( x  e.  z  |->  ( x  i^i 
A ) )
6765, 66fmptd 5852 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  (
x  e.  z  |->  ( x  i^i  A ) ) : z --> ( Bt  A ) )
68 frn 5556 . . . . . . . . . . . . . 14  |-  ( ( x  e.  z  |->  ( x  i^i  A ) ) : z --> ( Bt  A )  ->  ran  ( x  e.  z  |->  ( x  i^i  A
) )  C_  ( Bt  A ) )
6967, 68syl 16 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  ran  ( x  e.  z  |->  ( x  i^i  A
) )  C_  ( Bt  A ) )
70 eltg3i 16981 . . . . . . . . . . . . 13  |-  ( ( ( Bt  A )  e.  _V  /\ 
ran  ( x  e.  z  |->  ( x  i^i 
A ) )  C_  ( Bt  A ) )  ->  U. ran  ( x  e.  z  |->  ( x  i^i 
A ) )  e.  ( topGen `  ( Bt  A
) ) )
711, 69, 70sylancr 645 . . . . . . . . . . . 12  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  U. ran  ( x  e.  z  |->  ( x  i^i  A
) )  e.  (
topGen `  ( Bt  A ) ) )
7226, 71syl5eqel 2488 . . . . . . . . . . 11  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  U_ x  e.  z  ( x  i^i  A )  e.  (
topGen `  ( Bt  A ) ) )
7359, 72syl5eqel 2488 . . . . . . . . . 10  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  ( U. z  i^i  A )  e.  ( topGen `  ( Bt  A ) ) )
74 ineq1 3495 . . . . . . . . . . 11  |-  ( w  =  U. z  -> 
( w  i^i  A
)  =  ( U. z  i^i  A ) )
7574eleq1d 2470 . . . . . . . . . 10  |-  ( w  =  U. z  -> 
( ( w  i^i 
A )  e.  (
topGen `  ( Bt  A ) )  <->  ( U. z  i^i  A )  e.  (
topGen `  ( Bt  A ) ) ) )
7673, 75syl5ibrcom 214 . . . . . . . . 9  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  z  C_  B )  ->  (
w  =  U. z  ->  ( w  i^i  A
)  e.  ( topGen `  ( Bt  A ) ) ) )
7776expimpd 587 . . . . . . . 8  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( ( z  C_  B  /\  w  =  U. z )  ->  (
w  i^i  A )  e.  ( topGen `  ( Bt  A
) ) ) )
7877exlimdv 1643 . . . . . . 7  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( E. z ( z  C_  B  /\  w  =  U. z
)  ->  ( w  i^i  A )  e.  (
topGen `  ( Bt  A ) ) ) )
7957, 78sylbid 207 . . . . . 6  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( w  e.  (
topGen `  B )  -> 
( w  i^i  A
)  e.  ( topGen `  ( Bt  A ) ) ) )
8079imp 419 . . . . 5  |-  ( ( ( B  e.  V  /\  A  e.  W
)  /\  w  e.  ( topGen `  B )
)  ->  ( w  i^i  A )  e.  (
topGen `  ( Bt  A ) ) )
81 eqid 2404 . . . . 5  |-  ( w  e.  ( topGen `  B
)  |->  ( w  i^i 
A ) )  =  ( w  e.  (
topGen `  B )  |->  ( w  i^i  A ) )
8280, 81fmptd 5852 . . . 4  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( w  e.  (
topGen `  B )  |->  ( w  i^i  A ) ) : ( topGen `  B ) --> ( topGen `  ( Bt  A ) ) )
83 frn 5556 . . . 4  |-  ( ( w  e.  ( topGen `  B )  |->  ( w  i^i  A ) ) : ( topGen `  B
) --> ( topGen `  ( Bt  A ) )  ->  ran  ( w  e.  (
topGen `  B )  |->  ( w  i^i  A ) )  C_  ( topGen `  ( Bt  A ) ) )
8482, 83syl 16 . . 3  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ran  ( w  e.  ( topGen `  B )  |->  ( w  i^i  A
) )  C_  ( topGen `
 ( Bt  A ) ) )
8555, 84eqsstrd 3342 . 2  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( ( topGen `  B
)t 
A )  C_  ( topGen `
 ( Bt  A ) ) )
8653, 85eqssd 3325 1  |-  ( ( B  e.  V  /\  A  e.  W )  ->  ( topGen `  ( Bt  A
) )  =  ( ( topGen `  B )t  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721   A.wral 2666   _Vcvv 2916    i^i cin 3279    C_ wss 3280   U.cuni 3975   U_ciun 4053    e. cmpt 4226   ran crn 4838    |` cres 4839   "cima 4840   Fun wfun 5407    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040   ↾t crest 13603   topGenctg 13620
This theorem is referenced by:  resttop  17178  ordtrest2  17222  2ndcrest  17470  txrest  17616  xkoptsub  17639  xrtgioo  18790
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-rest 13605  df-topgen 13622
  Copyright terms: Public domain W3C validator