MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgqtop Structured version   Unicode version

Theorem tgqtop 20339
Description: An injection maps generated topologies to each other. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
qtopcmp.1  |-  X  = 
U. J
Assertion
Ref Expression
tgqtop  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  (
( topGen `  J ) qTop  F )  =  ( topGen `  ( J qTop  F ) ) )

Proof of Theorem tgqtop
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ocnv 5834 . . . . . . . . 9  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
2 f1ofun 5824 . . . . . . . . 9  |-  ( `' F : Y -1-1-onto-> X  ->  Fun  `' F )
31, 2syl 16 . . . . . . . 8  |-  ( F : X -1-1-onto-> Y  ->  Fun  `' F
)
43ad2antlr 726 . . . . . . 7  |-  ( ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  /\  x  C_  Y )  ->  Fun  `' F )
5 simpr 461 . . . . . . . 8  |-  ( ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  /\  x  C_  Y )  ->  x  C_  Y )
6 df-rn 5019 . . . . . . . . 9  |-  ran  F  =  dom  `' F
7 f1ofo 5829 . . . . . . . . . . 11  |-  ( F : X -1-1-onto-> Y  ->  F : X -onto-> Y )
87ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  /\  x  C_  Y )  ->  F : X -onto-> Y )
9 forn 5804 . . . . . . . . . 10  |-  ( F : X -onto-> Y  ->  ran  F  =  Y )
108, 9syl 16 . . . . . . . . 9  |-  ( ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  /\  x  C_  Y )  ->  ran  F  =  Y )
116, 10syl5eqr 2512 . . . . . . . 8  |-  ( ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  /\  x  C_  Y )  ->  dom  `' F  =  Y )
125, 11sseqtr4d 3536 . . . . . . 7  |-  ( ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  /\  x  C_  Y )  ->  x  C_ 
dom  `' F )
13 funimass4 5924 . . . . . . 7  |-  ( ( Fun  `' F  /\  x  C_  dom  `' F
)  ->  ( ( `' F " x ) 
C_  U. ( J  i^i  ~P ( `' F "
x ) )  <->  A. y  e.  x  ( `' F `  y )  e.  U. ( J  i^i  ~P ( `' F "
x ) ) ) )
144, 12, 13syl2anc 661 . . . . . 6  |-  ( ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  /\  x  C_  Y )  ->  (
( `' F "
x )  C_  U. ( J  i^i  ~P ( `' F " x ) )  <->  A. y  e.  x  ( `' F `  y )  e.  U. ( J  i^i  ~P ( `' F " x ) ) ) )
15 dfss3 3489 . . . . . . 7  |-  ( x 
C_  U. ( ( J qTop 
F )  i^i  ~P x )  <->  A. y  e.  x  y  e.  U. ( ( J qTop  F
)  i^i  ~P x
) )
16 inss1 3714 . . . . . . . . . . . . . . . 16  |-  ( ( J qTop  F )  i^i 
~P x )  C_  ( J qTop  F )
17 simprl 756 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  z  e.  ( ( J qTop  F
)  i^i  ~P x
) )
1816, 17sseldi 3497 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  z  e.  ( J qTop  F )
)
19 qtopcmp.1 . . . . . . . . . . . . . . . . . 18  |-  X  = 
U. J
2019elqtop2 20328 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  TopBases  /\  F : X -onto-> Y )  ->  (
z  e.  ( J qTop 
F )  <->  ( z  C_  Y  /\  ( `' F " z )  e.  J ) ) )
217, 20sylan2 474 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  (
z  e.  ( J qTop 
F )  <->  ( z  C_  Y  /\  ( `' F " z )  e.  J ) ) )
2221ad3antrrr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  ( z  e.  ( J qTop  F )  <-> 
( z  C_  Y  /\  ( `' F "
z )  e.  J
) ) )
2318, 22mpbid 210 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  ( z  C_  Y  /\  ( `' F " z )  e.  J ) )
2423simprd 463 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  ( `' F " z )  e.  J )
25 inss2 3715 . . . . . . . . . . . . . . . . 17  |-  ( ( J qTop  F )  i^i 
~P x )  C_  ~P x
2625, 17sseldi 3497 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  z  e.  ~P x )
2726elpwid 4025 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  z  C_  x )
28 imass2 5382 . . . . . . . . . . . . . . 15  |-  ( z 
C_  x  ->  ( `' F " z ) 
C_  ( `' F " x ) )
2927, 28syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  ( `' F " z )  C_  ( `' F " x ) )
30 elpwg 4023 . . . . . . . . . . . . . . 15  |-  ( ( `' F " z )  e.  J  ->  (
( `' F "
z )  e.  ~P ( `' F " x )  <-> 
( `' F "
z )  C_  ( `' F " x ) ) )
3124, 30syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  ( ( `' F " z )  e.  ~P ( `' F " x )  <-> 
( `' F "
z )  C_  ( `' F " x ) ) )
3229, 31mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  ( `' F " z )  e. 
~P ( `' F " x ) )
3324, 32elind 3684 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  ( `' F " z )  e.  ( J  i^i  ~P ( `' F " x ) ) )
34 simp-4r 768 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  F : X
-1-1-onto-> Y )
3534, 1syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  `' F : Y -1-1-onto-> X )
36 f1ofn 5823 . . . . . . . . . . . . . 14  |-  ( `' F : Y -1-1-onto-> X  ->  `' F  Fn  Y
)
3735, 36syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  `' F  Fn  Y )
385ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  x  C_  Y
)
3927, 38sstrd 3509 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  z  C_  Y )
40 simprr 757 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  y  e.  z )
41 fnfvima 6151 . . . . . . . . . . . . 13  |-  ( ( `' F  Fn  Y  /\  z  C_  Y  /\  y  e.  z )  ->  ( `' F `  y )  e.  ( `' F " z ) )
4237, 39, 40, 41syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  ( `' F `  y )  e.  ( `' F "
z ) )
43 eleq2 2530 . . . . . . . . . . . . 13  |-  ( w  =  ( `' F " z )  ->  (
( `' F `  y )  e.  w  <->  ( `' F `  y )  e.  ( `' F " z ) ) )
4443rspcev 3210 . . . . . . . . . . . 12  |-  ( ( ( `' F "
z )  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  ( `' F " z ) )  ->  E. w  e.  ( J  i^i  ~P ( `' F " x ) ) ( `' F `  y )  e.  w
)
4533, 42, 44syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
z  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  z )
)  ->  E. w  e.  ( J  i^i  ~P ( `' F " x ) ) ( `' F `  y )  e.  w
)
4645rexlimdvaa 2950 . . . . . . . . . 10  |-  ( ( ( ( J  e.  TopBases 
/\  F : X -1-1-onto-> Y
)  /\  x  C_  Y
)  /\  y  e.  x )  ->  ( E. z  e.  (
( J qTop  F )  i^i  ~P x ) y  e.  z  ->  E. w  e.  ( J  i^i  ~P ( `' F " x ) ) ( `' F `  y )  e.  w
) )
47 simp-4r 768 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  F : X -1-1-onto-> Y
)
48 f1ofun 5824 . . . . . . . . . . . . . . . . 17  |-  ( F : X -1-1-onto-> Y  ->  Fun  F )
4947, 48syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  Fun  F )
50 inss2 3715 . . . . . . . . . . . . . . . . . 18  |-  ( J  i^i  ~P ( `' F " x ) )  C_  ~P ( `' F " x )
51 simprl 756 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  w  e.  ( J  i^i  ~P ( `' F " x ) ) )
5250, 51sseldi 3497 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  w  e.  ~P ( `' F " x ) )
5352elpwid 4025 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  w  C_  ( `' F " x ) )
54 funimass2 5668 . . . . . . . . . . . . . . . 16  |-  ( ( Fun  F  /\  w  C_  ( `' F "
x ) )  -> 
( F " w
)  C_  x )
5549, 53, 54syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  ( F "
w )  C_  x
)
565ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  x  C_  Y
)
5755, 56sstrd 3509 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  ( F "
w )  C_  Y
)
58 f1of1 5821 . . . . . . . . . . . . . . . . 17  |-  ( F : X -1-1-onto-> Y  ->  F : X -1-1-> Y )
5947, 58syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  F : X -1-1-> Y )
60 inss1 3714 . . . . . . . . . . . . . . . . . 18  |-  ( J  i^i  ~P ( `' F " x ) )  C_  J
6160, 51sseldi 3497 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  w  e.  J
)
62 elssuni 4281 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  J  ->  w  C_ 
U. J )
6362, 19syl6sseqr 3546 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  J  ->  w  C_  X )
6461, 63syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  w  C_  X
)
65 f1imacnv 5838 . . . . . . . . . . . . . . . 16  |-  ( ( F : X -1-1-> Y  /\  w  C_  X )  ->  ( `' F " ( F " w
) )  =  w )
6659, 64, 65syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  ( `' F " ( F " w
) )  =  w )
6766, 61eqeltrd 2545 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  ( `' F " ( F " w
) )  e.  J
)
6819elqtop2 20328 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  TopBases  /\  F : X -onto-> Y )  ->  (
( F " w
)  e.  ( J qTop 
F )  <->  ( ( F " w )  C_  Y  /\  ( `' F " ( F " w
) )  e.  J
) ) )
697, 68sylan2 474 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  (
( F " w
)  e.  ( J qTop 
F )  <->  ( ( F " w )  C_  Y  /\  ( `' F " ( F " w
) )  e.  J
) ) )
7069ad3antrrr 729 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  ( ( F
" w )  e.  ( J qTop  F )  <-> 
( ( F "
w )  C_  Y  /\  ( `' F "
( F " w
) )  e.  J
) ) )
7157, 67, 70mpbir2and 922 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  ( F "
w )  e.  ( J qTop  F ) )
72 vex 3112 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
7372elpw2 4620 . . . . . . . . . . . . . 14  |-  ( ( F " w )  e.  ~P x  <->  ( F " w )  C_  x
)
7455, 73sylibr 212 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  ( F "
w )  e.  ~P x )
7571, 74elind 3684 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  ( F "
w )  e.  ( ( J qTop  F )  i^i  ~P x ) )
765sselda 3499 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e.  TopBases 
/\  F : X -1-1-onto-> Y
)  /\  x  C_  Y
)  /\  y  e.  x )  ->  y  e.  Y )
7776adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  y  e.  Y
)
78 f1ocnvfv2 6184 . . . . . . . . . . . . . 14  |-  ( ( F : X -1-1-onto-> Y  /\  y  e.  Y )  ->  ( F `  ( `' F `  y ) )  =  y )
7947, 77, 78syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  ( F `  ( `' F `  y ) )  =  y )
80 f1ofn 5823 . . . . . . . . . . . . . . . 16  |-  ( F : X -1-1-onto-> Y  ->  F  Fn  X )
8180adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  F  Fn  X )
8281ad3antrrr 729 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  F  Fn  X
)
83 simprr 757 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  ( `' F `  y )  e.  w
)
84 fnfvima 6151 . . . . . . . . . . . . . 14  |-  ( ( F  Fn  X  /\  w  C_  X  /\  ( `' F `  y )  e.  w )  -> 
( F `  ( `' F `  y ) )  e.  ( F
" w ) )
8582, 64, 83, 84syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  ( F `  ( `' F `  y ) )  e.  ( F
" w ) )
8679, 85eqeltrrd 2546 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  y  e.  ( F " w ) )
87 eleq2 2530 . . . . . . . . . . . . 13  |-  ( z  =  ( F "
w )  ->  (
y  e.  z  <->  y  e.  ( F " w ) ) )
8887rspcev 3210 . . . . . . . . . . . 12  |-  ( ( ( F " w
)  e.  ( ( J qTop  F )  i^i 
~P x )  /\  y  e.  ( F " w ) )  ->  E. z  e.  (
( J qTop  F )  i^i  ~P x ) y  e.  z )
8975, 86, 88syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  TopBases  /\  F : X
-1-1-onto-> Y )  /\  x  C_  Y )  /\  y  e.  x )  /\  (
w  e.  ( J  i^i  ~P ( `' F " x ) )  /\  ( `' F `  y )  e.  w ) )  ->  E. z  e.  ( ( J qTop  F )  i^i  ~P x ) y  e.  z )
9089rexlimdvaa 2950 . . . . . . . . . 10  |-  ( ( ( ( J  e.  TopBases 
/\  F : X -1-1-onto-> Y
)  /\  x  C_  Y
)  /\  y  e.  x )  ->  ( E. w  e.  ( J  i^i  ~P ( `' F " x ) ) ( `' F `  y )  e.  w  ->  E. z  e.  ( ( J qTop  F )  i^i  ~P x ) y  e.  z ) )
9146, 90impbid 191 . . . . . . . . 9  |-  ( ( ( ( J  e.  TopBases 
/\  F : X -1-1-onto-> Y
)  /\  x  C_  Y
)  /\  y  e.  x )  ->  ( E. z  e.  (
( J qTop  F )  i^i  ~P x ) y  e.  z  <->  E. w  e.  ( J  i^i  ~P ( `' F " x ) ) ( `' F `  y )  e.  w
) )
92 eluni2 4255 . . . . . . . . 9  |-  ( y  e.  U. ( ( J qTop  F )  i^i 
~P x )  <->  E. z  e.  ( ( J qTop  F
)  i^i  ~P x
) y  e.  z )
93 eluni2 4255 . . . . . . . . 9  |-  ( ( `' F `  y )  e.  U. ( J  i^i  ~P ( `' F " x ) )  <->  E. w  e.  ( J  i^i  ~P ( `' F " x ) ) ( `' F `  y )  e.  w
)
9491, 92, 933bitr4g 288 . . . . . . . 8  |-  ( ( ( ( J  e.  TopBases 
/\  F : X -1-1-onto-> Y
)  /\  x  C_  Y
)  /\  y  e.  x )  ->  (
y  e.  U. (
( J qTop  F )  i^i  ~P x )  <->  ( `' F `  y )  e.  U. ( J  i^i  ~P ( `' F "
x ) ) ) )
9594ralbidva 2893 . . . . . . 7  |-  ( ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  /\  x  C_  Y )  ->  ( A. y  e.  x  y  e.  U. (
( J qTop  F )  i^i  ~P x )  <->  A. y  e.  x  ( `' F `  y )  e.  U. ( J  i^i  ~P ( `' F "
x ) ) ) )
9615, 95syl5bb 257 . . . . . 6  |-  ( ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  /\  x  C_  Y )  ->  (
x  C_  U. (
( J qTop  F )  i^i  ~P x )  <->  A. y  e.  x  ( `' F `  y )  e.  U. ( J  i^i  ~P ( `' F "
x ) ) ) )
9714, 96bitr4d 256 . . . . 5  |-  ( ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  /\  x  C_  Y )  ->  (
( `' F "
x )  C_  U. ( J  i^i  ~P ( `' F " x ) )  <->  x  C_  U. (
( J qTop  F )  i^i  ~P x ) ) )
98 eltg 19585 . . . . . 6  |-  ( J  e.  TopBases  ->  ( ( `' F " x )  e.  ( topGen `  J
)  <->  ( `' F " x )  C_  U. ( J  i^i  ~P ( `' F " x ) ) ) )
9998ad2antrr 725 . . . . 5  |-  ( ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  /\  x  C_  Y )  ->  (
( `' F "
x )  e.  (
topGen `  J )  <->  ( `' F " x )  C_  U. ( J  i^i  ~P ( `' F " x ) ) ) )
100 ovex 6324 . . . . . 6  |-  ( J qTop 
F )  e.  _V
101 eltg 19585 . . . . . 6  |-  ( ( J qTop  F )  e. 
_V  ->  ( x  e.  ( topGen `  ( J qTop  F ) )  <->  x  C_  U. (
( J qTop  F )  i^i  ~P x ) ) )
102100, 101mp1i 12 . . . . 5  |-  ( ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  /\  x  C_  Y )  ->  (
x  e.  ( topGen `  ( J qTop  F ) )  <->  x  C_  U. (
( J qTop  F )  i^i  ~P x ) ) )
10397, 99, 1023bitr4d 285 . . . 4  |-  ( ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  /\  x  C_  Y )  ->  (
( `' F "
x )  e.  (
topGen `  J )  <->  x  e.  ( topGen `  ( J qTop  F ) ) ) )
104103pm5.32da 641 . . 3  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  (
( x  C_  Y  /\  ( `' F "
x )  e.  (
topGen `  J ) )  <-> 
( x  C_  Y  /\  x  e.  ( topGen `
 ( J qTop  F
) ) ) ) )
105 tgtopon 19600 . . . . . 6  |-  ( J  e.  TopBases  ->  ( topGen `  J
)  e.  (TopOn `  U. J ) )
106105adantr 465 . . . . 5  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  ( topGen `
 J )  e.  (TopOn `  U. J ) )
10719fveq2i 5875 . . . . 5  |-  (TopOn `  X )  =  (TopOn `  U. J )
108106, 107syl6eleqr 2556 . . . 4  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  ( topGen `
 J )  e.  (TopOn `  X )
)
1097adantl 466 . . . 4  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  F : X -onto-> Y )
110 elqtop3 20330 . . . 4  |-  ( ( ( topGen `  J )  e.  (TopOn `  X )  /\  F : X -onto-> Y
)  ->  ( x  e.  ( ( topGen `  J
) qTop  F )  <->  ( x  C_  Y  /\  ( `' F " x )  e.  ( topGen `  J
) ) ) )
111108, 109, 110syl2anc 661 . . 3  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  (
x  e.  ( (
topGen `  J ) qTop  F
)  <->  ( x  C_  Y  /\  ( `' F " x )  e.  (
topGen `  J ) ) ) )
112 unitg 19595 . . . . . . . . 9  |-  ( ( J qTop  F )  e. 
_V  ->  U. ( topGen `  ( J qTop  F ) )  = 
U. ( J qTop  F
) )
113100, 112ax-mp 5 . . . . . . . 8  |-  U. ( topGen `
 ( J qTop  F
) )  =  U. ( J qTop  F )
11419elqtop2 20328 . . . . . . . . . . . 12  |-  ( ( J  e.  TopBases  /\  F : X -onto-> Y )  ->  (
x  e.  ( J qTop 
F )  <->  ( x  C_  Y  /\  ( `' F " x )  e.  J ) ) )
1157, 114sylan2 474 . . . . . . . . . . 11  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  (
x  e.  ( J qTop 
F )  <->  ( x  C_  Y  /\  ( `' F " x )  e.  J ) ) )
116 simpl 457 . . . . . . . . . . . 12  |-  ( ( x  C_  Y  /\  ( `' F " x )  e.  J )  ->  x  C_  Y )
117 selpw 4022 . . . . . . . . . . . 12  |-  ( x  e.  ~P Y  <->  x  C_  Y
)
118116, 117sylibr 212 . . . . . . . . . . 11  |-  ( ( x  C_  Y  /\  ( `' F " x )  e.  J )  ->  x  e.  ~P Y
)
119115, 118syl6bi 228 . . . . . . . . . 10  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  (
x  e.  ( J qTop 
F )  ->  x  e.  ~P Y ) )
120119ssrdv 3505 . . . . . . . . 9  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  ( J qTop  F )  C_  ~P Y )
121 sspwuni 4421 . . . . . . . . 9  |-  ( ( J qTop  F )  C_  ~P Y  <->  U. ( J qTop  F
)  C_  Y )
122120, 121sylib 196 . . . . . . . 8  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  U. ( J qTop  F )  C_  Y
)
123113, 122syl5eqss 3543 . . . . . . 7  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  U. ( topGen `
 ( J qTop  F
) )  C_  Y
)
124 sspwuni 4421 . . . . . . 7  |-  ( (
topGen `  ( J qTop  F
) )  C_  ~P Y 
<-> 
U. ( topGen `  ( J qTop  F ) )  C_  Y )
125123, 124sylibr 212 . . . . . 6  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  ( topGen `
 ( J qTop  F
) )  C_  ~P Y )
126125sseld 3498 . . . . 5  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  (
x  e.  ( topGen `  ( J qTop  F ) )  ->  x  e.  ~P Y ) )
127126, 117syl6ib 226 . . . 4  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  (
x  e.  ( topGen `  ( J qTop  F ) )  ->  x  C_  Y
) )
128127pm4.71rd 635 . . 3  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  (
x  e.  ( topGen `  ( J qTop  F ) )  <->  ( x  C_  Y  /\  x  e.  (
topGen `  ( J qTop  F
) ) ) ) )
129104, 111, 1283bitr4d 285 . 2  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  (
x  e.  ( (
topGen `  J ) qTop  F
)  <->  x  e.  ( topGen `
 ( J qTop  F
) ) ) )
130129eqrdv 2454 1  |-  ( ( J  e.  TopBases  /\  F : X -1-1-onto-> Y )  ->  (
( topGen `  J ) qTop  F )  =  ( topGen `  ( J qTop  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808   _Vcvv 3109    i^i cin 3470    C_ wss 3471   ~Pcpw 4015   U.cuni 4251   `'ccnv 5007   dom cdm 5008   ran crn 5009   "cima 5011   Fun wfun 5588    Fn wfn 5589   -1-1->wf1 5591   -onto->wfo 5592   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296   topGenctg 14855   qTop cqtop 14920  TopOnctopon 19522   TopBasesctb 19525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-topgen 14861  df-qtop 14924  df-top 19526  df-bases 19528  df-topon 19529
This theorem is referenced by:  imasf1oxms  21118
  Copyright terms: Public domain W3C validator