MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpt0 Structured version   Unicode version

Theorem tgpt0 19589
Description: Hausdorff and T0 are equivalent for topological groups. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypothesis
Ref Expression
tgpt1.j  |-  J  =  ( TopOpen `  G )
Assertion
Ref Expression
tgpt0  |-  ( G  e.  TopGrp  ->  ( J  e. 
Haus 
<->  J  e.  Kol2 )
)

Proof of Theorem tgpt0
Dummy variables  w  a  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpt1.j . . 3  |-  J  =  ( TopOpen `  G )
21tgpt1 19588 . 2  |-  ( G  e.  TopGrp  ->  ( J  e. 
Haus 
<->  J  e.  Fre )
)
3 t1t0 18852 . . 3  |-  ( J  e.  Fre  ->  J  e.  Kol2 )
4 eleq2 2502 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  (
x  e.  w  <->  x  e.  z ) )
5 eleq2 2502 . . . . . . . . . . . . . 14  |-  ( w  =  z  ->  (
y  e.  w  <->  y  e.  z ) )
64, 5imbi12d 320 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  (
( x  e.  w  ->  y  e.  w )  <-> 
( x  e.  z  ->  y  e.  z ) ) )
76rspccva 3069 . . . . . . . . . . . 12  |-  ( ( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  /\  z  e.  J
)  ->  ( x  e.  z  ->  y  e.  z ) )
87adantll 708 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  z  e.  J )  ->  (
x  e.  z  -> 
y  e.  z ) )
9 tgpgrp 19549 . . . . . . . . . . . . . . . . 17  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
109ad3antrrr 724 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  ->  G  e.  Grp )
11 simpllr 753 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) ) )
1211simprd 460 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
y  e.  ( Base `  G ) )
13 eqid 2441 . . . . . . . . . . . . . . . . 17  |-  ( Base `  G )  =  (
Base `  G )
14 eqid 2441 . . . . . . . . . . . . . . . . 17  |-  ( 0g
`  G )  =  ( 0g `  G
)
15 eqid 2441 . . . . . . . . . . . . . . . . 17  |-  ( -g `  G )  =  (
-g `  G )
1613, 14, 15grpsubid 15603 . . . . . . . . . . . . . . . 16  |-  ( ( G  e.  Grp  /\  y  e.  ( Base `  G ) )  -> 
( y ( -g `  G ) y )  =  ( 0g `  G ) )
1710, 12, 16syl2anc 656 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( y ( -g `  G ) y )  =  ( 0g `  G ) )
1817oveq1d 6105 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( ( y (
-g `  G )
y ) ( +g  `  G ) x )  =  ( ( 0g
`  G ) ( +g  `  G ) x ) )
1911simpld 456 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  ->  x  e.  ( Base `  G ) )
20 eqid 2441 . . . . . . . . . . . . . . . 16  |-  ( +g  `  G )  =  ( +g  `  G )
2113, 20, 14grplid 15561 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G ) )  -> 
( ( 0g `  G ) ( +g  `  G ) x )  =  x )
2210, 19, 21syl2anc 656 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( ( 0g `  G ) ( +g  `  G ) x )  =  x )
2318, 22eqtrd 2473 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( ( y (
-g `  G )
y ) ( +g  `  G ) x )  =  x )
24 tgptmd 19550 . . . . . . . . . . . . . . . . . 18  |-  ( G  e.  TopGrp  ->  G  e. TopMnd )
2524ad3antrrr 724 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  ->  G  e. TopMnd )
261, 13tgptopon 19553 . . . . . . . . . . . . . . . . . 18  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  ( Base `  G
) ) )
2726ad3antrrr 724 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  ->  J  e.  (TopOn `  ( Base `  G ) ) )
2827, 27, 12cnmptc 19135 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( a  e.  (
Base `  G )  |->  y )  e.  ( J  Cn  J ) )
2927cnmptid 19134 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( a  e.  (
Base `  G )  |->  a )  e.  ( J  Cn  J ) )
301, 15tgpsubcn 19561 . . . . . . . . . . . . . . . . . . 19  |-  ( G  e.  TopGrp  ->  ( -g `  G
)  e.  ( ( J  tX  J )  Cn  J ) )
3130ad3antrrr 724 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( -g `  G )  e.  ( ( J 
tX  J )  Cn  J ) )
3227, 28, 29, 31cnmpt12f 19139 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( a  e.  (
Base `  G )  |->  ( y ( -g `  G ) a ) )  e.  ( J  Cn  J ) )
3327, 27, 19cnmptc 19135 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( a  e.  (
Base `  G )  |->  x )  e.  ( J  Cn  J ) )
341, 20, 25, 27, 32, 33cnmpt1plusg 19558 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( a  e.  (
Base `  G )  |->  ( ( y (
-g `  G )
a ) ( +g  `  G ) x ) )  e.  ( J  Cn  J ) )
35 simprl 750 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
z  e.  J )
36 cnima 18769 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  (
Base `  G )  |->  ( ( y (
-g `  G )
a ) ( +g  `  G ) x ) )  e.  ( J  Cn  J )  /\  z  e.  J )  ->  ( `' ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  e.  J
)
3734, 35, 36syl2anc 656 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( `' ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  e.  J
)
38 simplr 749 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  ->  A. w  e.  J  ( x  e.  w  ->  y  e.  w ) )
3913, 20, 15grpnpcan 15610 . . . . . . . . . . . . . . . . . 18  |-  ( ( G  e.  Grp  /\  y  e.  ( Base `  G )  /\  x  e.  ( Base `  G
) )  ->  (
( y ( -g `  G ) x ) ( +g  `  G
) x )  =  y )
4010, 12, 19, 39syl3anc 1213 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( ( y (
-g `  G )
x ) ( +g  `  G ) x )  =  y )
41 simprr 751 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
y  e.  z )
4240, 41eqeltrd 2515 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( ( y (
-g `  G )
x ) ( +g  `  G ) x )  e.  z )
43 oveq2 6098 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  x  ->  (
y ( -g `  G
) a )  =  ( y ( -g `  G ) x ) )
4443oveq1d 6105 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  x  ->  (
( y ( -g `  G ) a ) ( +g  `  G
) x )  =  ( ( y (
-g `  G )
x ) ( +g  `  G ) x ) )
4544eleq1d 2507 . . . . . . . . . . . . . . . . 17  |-  ( a  =  x  ->  (
( ( y (
-g `  G )
a ) ( +g  `  G ) x )  e.  z  <->  ( (
y ( -g `  G
) x ) ( +g  `  G ) x )  e.  z ) )
46 eqid 2441 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) )  =  ( a  e.  (
Base `  G )  |->  ( ( y (
-g `  G )
a ) ( +g  `  G ) x ) )
4746mptpreima 5328 . . . . . . . . . . . . . . . . 17  |-  ( `' ( a  e.  (
Base `  G )  |->  ( ( y (
-g `  G )
a ) ( +g  `  G ) x ) ) " z )  =  { a  e.  ( Base `  G
)  |  ( ( y ( -g `  G
) a ) ( +g  `  G ) x )  e.  z }
4845, 47elrab2 3116 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( `' ( a  e.  ( Base `  G )  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  <->  ( x  e.  ( Base `  G
)  /\  ( (
y ( -g `  G
) x ) ( +g  `  G ) x )  e.  z ) )
4919, 42, 48sylanbrc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  ->  x  e.  ( `' ( a  e.  (
Base `  G )  |->  ( ( y (
-g `  G )
a ) ( +g  `  G ) x ) ) " z ) )
50 eleq2 2502 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( `' ( a  e.  ( Base `  G )  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  ->  (
x  e.  w  <->  x  e.  ( `' ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z ) ) )
51 eleq2 2502 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( `' ( a  e.  ( Base `  G )  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  ->  (
y  e.  w  <->  y  e.  ( `' ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z ) ) )
5250, 51imbi12d 320 . . . . . . . . . . . . . . . 16  |-  ( w  =  ( `' ( a  e.  ( Base `  G )  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  ->  (
( x  e.  w  ->  y  e.  w )  <-> 
( x  e.  ( `' ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  ->  y  e.  ( `' ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z ) ) ) )
5352rspcv 3066 . . . . . . . . . . . . . . 15  |-  ( ( `' ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  e.  J  ->  ( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  ->  (
x  e.  ( `' ( a  e.  (
Base `  G )  |->  ( ( y (
-g `  G )
a ) ( +g  `  G ) x ) ) " z )  ->  y  e.  ( `' ( a  e.  ( Base `  G
)  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z ) ) ) )
5437, 38, 49, 53syl3c 61 . . . . . . . . . . . . . 14  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
y  e.  ( `' ( a  e.  (
Base `  G )  |->  ( ( y (
-g `  G )
a ) ( +g  `  G ) x ) ) " z ) )
55 oveq2 6098 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  y  ->  (
y ( -g `  G
) a )  =  ( y ( -g `  G ) y ) )
5655oveq1d 6105 . . . . . . . . . . . . . . . . 17  |-  ( a  =  y  ->  (
( y ( -g `  G ) a ) ( +g  `  G
) x )  =  ( ( y (
-g `  G )
y ) ( +g  `  G ) x ) )
5756eleq1d 2507 . . . . . . . . . . . . . . . 16  |-  ( a  =  y  ->  (
( ( y (
-g `  G )
a ) ( +g  `  G ) x )  e.  z  <->  ( (
y ( -g `  G
) y ) ( +g  `  G ) x )  e.  z ) )
5857, 47elrab2 3116 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( `' ( a  e.  ( Base `  G )  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  <->  ( y  e.  ( Base `  G
)  /\  ( (
y ( -g `  G
) y ) ( +g  `  G ) x )  e.  z ) )
5958simprbi 461 . . . . . . . . . . . . . 14  |-  ( y  e.  ( `' ( a  e.  ( Base `  G )  |->  ( ( y ( -g `  G
) a ) ( +g  `  G ) x ) ) "
z )  ->  (
( y ( -g `  G ) y ) ( +g  `  G
) x )  e.  z )
6054, 59syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  -> 
( ( y (
-g `  G )
y ) ( +g  `  G ) x )  e.  z )
6123, 60eqeltrrd 2516 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  ( z  e.  J  /\  y  e.  z ) )  ->  x  e.  z )
6261expr 612 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  z  e.  J )  ->  (
y  e.  z  ->  x  e.  z )
)
638, 62impbid 191 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
TopGrp  /\  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )  /\  A. w  e.  J  (
x  e.  w  -> 
y  e.  w ) )  /\  z  e.  J )  ->  (
x  e.  z  <->  y  e.  z ) )
6463ralrimiva 2797 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) ) )  /\  A. w  e.  J  ( x  e.  w  ->  y  e.  w ) )  ->  A. z  e.  J  ( x  e.  z  <->  y  e.  z ) )
6564ex 434 . . . . . . . 8  |-  ( ( G  e.  TopGrp  /\  (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) ) )  -> 
( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  ->  A. z  e.  J  ( x  e.  z  <->  y  e.  z ) ) )
6665imim1d 75 . . . . . . 7  |-  ( ( G  e.  TopGrp  /\  (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) ) )  -> 
( ( A. z  e.  J  ( x  e.  z  <->  y  e.  z )  ->  x  =  y )  ->  ( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  ->  x  =  y ) ) )
6766anassrs 643 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  x  e.  ( Base `  G ) )  /\  y  e.  ( Base `  G ) )  -> 
( ( A. z  e.  J  ( x  e.  z  <->  y  e.  z )  ->  x  =  y )  ->  ( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  ->  x  =  y ) ) )
6867ralimdva 2792 . . . . 5  |-  ( ( G  e.  TopGrp  /\  x  e.  ( Base `  G
) )  ->  ( A. y  e.  ( Base `  G ) ( A. z  e.  J  ( x  e.  z  <->  y  e.  z )  ->  x  =  y )  ->  A. y  e.  (
Base `  G )
( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  ->  x  =  y ) ) )
6968ralimdva 2792 . . . 4  |-  ( G  e.  TopGrp  ->  ( A. x  e.  ( Base `  G
) A. y  e.  ( Base `  G
) ( A. z  e.  J  ( x  e.  z  <->  y  e.  z )  ->  x  =  y )  ->  A. x  e.  ( Base `  G
) A. y  e.  ( Base `  G
) ( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  ->  x  =  y ) ) )
70 ist0-2 18848 . . . . 5  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  ( J  e. 
Kol2 
<-> 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( A. z  e.  J  ( x  e.  z  <->  y  e.  z )  ->  x  =  y )
) )
7126, 70syl 16 . . . 4  |-  ( G  e.  TopGrp  ->  ( J  e. 
Kol2 
<-> 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( A. z  e.  J  ( x  e.  z  <->  y  e.  z )  ->  x  =  y )
) )
72 ist1-2 18851 . . . . 5  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  ( J  e. 
Fre 
<-> 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  ->  x  =  y ) ) )
7326, 72syl 16 . . . 4  |-  ( G  e.  TopGrp  ->  ( J  e. 
Fre 
<-> 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( A. w  e.  J  ( x  e.  w  ->  y  e.  w )  ->  x  =  y ) ) )
7469, 71, 733imtr4d 268 . . 3  |-  ( G  e.  TopGrp  ->  ( J  e. 
Kol2  ->  J  e.  Fre ) )
753, 74impbid2 204 . 2  |-  ( G  e.  TopGrp  ->  ( J  e. 
Fre 
<->  J  e.  Kol2 )
)
762, 75bitrd 253 1  |-  ( G  e.  TopGrp  ->  ( J  e. 
Haus 
<->  J  e.  Kol2 )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713    e. cmpt 4347   `'ccnv 4835   "cima 4839   ` cfv 5415  (class class class)co 6090   Basecbs 14170   +g cplusg 14234   TopOpenctopn 14356   0gc0g 14374   Grpcgrp 15406   -gcsg 15409  TopOnctopon 18399    Cn ccn 18728   Kol2ct0 18810   Frect1 18811   Hauscha 18812    tX ctx 19033  TopMndctmd 19541   TopGrpctgp 19542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-map 7212  df-0g 14376  df-topgen 14378  df-mnd 15411  df-plusf 15412  df-grp 15538  df-minusg 15539  df-sbg 15540  df-top 18403  df-bases 18405  df-topon 18406  df-topsp 18407  df-cld 18523  df-cn 18731  df-cnp 18732  df-t0 18817  df-t1 18818  df-haus 18819  df-tx 19035  df-tmd 19543  df-tgp 19544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator