MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpsubcn Structured version   Unicode version

Theorem tgpsubcn 20693
Description: In a topological group, the "subtraction" (or "division") is continuous. Axiom GT' of [BourbakiTop1] p. III.1 (Contributed by FL, 21-Jun-2010.) (Revised by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
tgpsubcn.2  |-  J  =  ( TopOpen `  G )
tgpsubcn.3  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
tgpsubcn  |-  ( G  e.  TopGrp  ->  .-  e.  (
( J  tX  J
)  Cn  J ) )

Proof of Theorem tgpsubcn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2392 . . 3  |-  ( Base `  G )  =  (
Base `  G )
2 eqid 2392 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
3 eqid 2392 . . 3  |-  ( invg `  G )  =  ( invg `  G )
4 tgpsubcn.3 . . 3  |-  .-  =  ( -g `  G )
51, 2, 3, 4grpsubfval 16228 . 2  |-  .-  =  ( x  e.  ( Base `  G ) ,  y  e.  ( Base `  G )  |->  ( x ( +g  `  G
) ( ( invg `  G ) `
 y ) ) )
6 tgpsubcn.2 . . 3  |-  J  =  ( TopOpen `  G )
7 tgptmd 20682 . . 3  |-  ( G  e.  TopGrp  ->  G  e. TopMnd )
86, 1tgptopon 20685 . . 3  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  ( Base `  G
) ) )
98, 8cnmpt1st 20273 . . 3  |-  ( G  e.  TopGrp  ->  ( x  e.  ( Base `  G
) ,  y  e.  ( Base `  G
)  |->  x )  e.  ( ( J  tX  J )  Cn  J
) )
108, 8cnmpt2nd 20274 . . . 4  |-  ( G  e.  TopGrp  ->  ( x  e.  ( Base `  G
) ,  y  e.  ( Base `  G
)  |->  y )  e.  ( ( J  tX  J )  Cn  J
) )
116, 3tgpinv 20688 . . . 4  |-  ( G  e.  TopGrp  ->  ( invg `  G )  e.  ( J  Cn  J ) )
128, 8, 10, 11cnmpt21f 20277 . . 3  |-  ( G  e.  TopGrp  ->  ( x  e.  ( Base `  G
) ,  y  e.  ( Base `  G
)  |->  ( ( invg `  G ) `
 y ) )  e.  ( ( J 
tX  J )  Cn  J ) )
136, 2, 7, 8, 8, 9, 12cnmpt2plusg 20691 . 2  |-  ( G  e.  TopGrp  ->  ( x  e.  ( Base `  G
) ,  y  e.  ( Base `  G
)  |->  ( x ( +g  `  G ) ( ( invg `  G ) `  y
) ) )  e.  ( ( J  tX  J )  Cn  J
) )
145, 13syl5eqel 2484 1  |-  ( G  e.  TopGrp  ->  .-  e.  (
( J  tX  J
)  Cn  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1399    e. wcel 1836   ` cfv 5509  (class class class)co 6214    |-> cmpt2 6216   Basecbs 14653   +g cplusg 14721   TopOpenctopn 14848   invgcminusg 16190   -gcsg 16191    Cn ccn 19830    tX ctx 20165   TopGrpctgp 20674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-rep 4491  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-ral 2747  df-rex 2748  df-reu 2749  df-rab 2751  df-v 3049  df-sbc 3266  df-csb 3362  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-op 3964  df-uni 4177  df-iun 4258  df-br 4381  df-opab 4439  df-mpt 4440  df-id 4722  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-iota 5473  df-fun 5511  df-fn 5512  df-f 5513  df-f1 5514  df-fo 5515  df-f1o 5516  df-fv 5517  df-ov 6217  df-oprab 6218  df-mpt2 6219  df-1st 6717  df-2nd 6718  df-map 7358  df-topgen 14870  df-plusf 16007  df-sbg 16195  df-top 19503  df-bases 19505  df-topon 19506  df-topsp 19507  df-cn 19833  df-tx 20167  df-tmd 20675  df-tgp 20676
This theorem is referenced by:  istgp2  20694  clssubg  20711  clsnsg  20712  tgphaus  20719  tgpt0  20721  qustgplem  20723
  Copyright terms: Public domain W3C validator