MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgphaus Structured version   Unicode version

Theorem tgphaus 19812
Description: A topological group is Hausdorff iff the identity subgroup is closed. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tgphaus.1  |-  .0.  =  ( 0g `  G )
tgphaus.j  |-  J  =  ( TopOpen `  G )
Assertion
Ref Expression
tgphaus  |-  ( G  e.  TopGrp  ->  ( J  e. 
Haus 
<->  {  .0.  }  e.  ( Clsd `  J )
) )

Proof of Theorem tgphaus
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgpgrp 19774 . . . . 5  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
2 eqid 2451 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
3 tgphaus.1 . . . . . 6  |-  .0.  =  ( 0g `  G )
42, 3grpidcl 15677 . . . . 5  |-  ( G  e.  Grp  ->  .0.  e.  ( Base `  G
) )
51, 4syl 16 . . . 4  |-  ( G  e.  TopGrp  ->  .0.  e.  ( Base `  G ) )
6 tgphaus.j . . . . . 6  |-  J  =  ( TopOpen `  G )
76, 2tgptopon 19778 . . . . 5  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  ( Base `  G
) ) )
8 toponuni 18657 . . . . 5  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  ( Base `  G
)  =  U. J
)
97, 8syl 16 . . . 4  |-  ( G  e.  TopGrp  ->  ( Base `  G
)  =  U. J
)
105, 9eleqtrd 2541 . . 3  |-  ( G  e.  TopGrp  ->  .0.  e.  U. J
)
11 eqid 2451 . . . . 5  |-  U. J  =  U. J
1211sncld 19100 . . . 4  |-  ( ( J  e.  Haus  /\  .0.  e.  U. J )  ->  {  .0.  }  e.  (
Clsd `  J )
)
1312expcom 435 . . 3  |-  (  .0. 
e.  U. J  ->  ( J  e.  Haus  ->  {  .0.  }  e.  ( Clsd `  J
) ) )
1410, 13syl 16 . 2  |-  ( G  e.  TopGrp  ->  ( J  e. 
Haus  ->  {  .0.  }  e.  ( Clsd `  J
) ) )
15 eqid 2451 . . . . . 6  |-  ( -g `  G )  =  (
-g `  G )
166, 15tgpsubcn 19786 . . . . 5  |-  ( G  e.  TopGrp  ->  ( -g `  G
)  e.  ( ( J  tX  J )  Cn  J ) )
17 cnclima 18997 . . . . . 6  |-  ( ( ( -g `  G
)  e.  ( ( J  tX  J )  Cn  J )  /\  {  .0.  }  e.  (
Clsd `  J )
)  ->  ( `' ( -g `  G )
" {  .0.  }
)  e.  ( Clsd `  ( J  tX  J
) ) )
1817ex 434 . . . . 5  |-  ( (
-g `  G )  e.  ( ( J  tX  J )  Cn  J
)  ->  ( {  .0.  }  e.  ( Clsd `  J )  ->  ( `' ( -g `  G
) " {  .0.  } )  e.  ( Clsd `  ( J  tX  J
) ) ) )
1916, 18syl 16 . . . 4  |-  ( G  e.  TopGrp  ->  ( {  .0.  }  e.  ( Clsd `  J
)  ->  ( `' ( -g `  G )
" {  .0.  }
)  e.  ( Clsd `  ( J  tX  J
) ) ) )
20 cnvimass 5290 . . . . . . . . 9  |-  ( `' ( -g `  G
) " {  .0.  } )  C_  dom  ( -g `  G )
212, 15grpsubf 15716 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  ( -g `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )
)
221, 21syl 16 . . . . . . . . . 10  |-  ( G  e.  TopGrp  ->  ( -g `  G
) : ( (
Base `  G )  X.  ( Base `  G
) ) --> ( Base `  G ) )
23 fdm 5664 . . . . . . . . . 10  |-  ( (
-g `  G ) : ( ( Base `  G )  X.  ( Base `  G ) ) --> ( Base `  G
)  ->  dom  ( -g `  G )  =  ( ( Base `  G
)  X.  ( Base `  G ) ) )
2422, 23syl 16 . . . . . . . . 9  |-  ( G  e.  TopGrp  ->  dom  ( -g `  G )  =  ( ( Base `  G
)  X.  ( Base `  G ) ) )
2520, 24syl5sseq 3505 . . . . . . . 8  |-  ( G  e.  TopGrp  ->  ( `' (
-g `  G ) " {  .0.  } ) 
C_  ( ( Base `  G )  X.  ( Base `  G ) ) )
26 relxp 5048 . . . . . . . 8  |-  Rel  (
( Base `  G )  X.  ( Base `  G
) )
27 relss 5028 . . . . . . . 8  |-  ( ( `' ( -g `  G
) " {  .0.  } )  C_  ( ( Base `  G )  X.  ( Base `  G
) )  ->  ( Rel  ( ( Base `  G
)  X.  ( Base `  G ) )  ->  Rel  ( `' ( -g `  G ) " {  .0.  } ) ) )
2825, 26, 27mpisyl 18 . . . . . . 7  |-  ( G  e.  TopGrp  ->  Rel  ( `' ( -g `  G )
" {  .0.  }
) )
29 dfrel4v 5390 . . . . . . 7  |-  ( Rel  ( `' ( -g `  G ) " {  .0.  } )  <->  ( `' ( -g `  G )
" {  .0.  }
)  =  { <. x ,  y >.  |  x ( `' ( -g `  G ) " {  .0.  } ) y } )
3028, 29sylib 196 . . . . . 6  |-  ( G  e.  TopGrp  ->  ( `' (
-g `  G ) " {  .0.  } )  =  { <. x ,  y >.  |  x ( `' ( -g `  G ) " {  .0.  } ) y } )
31 ffn 5660 . . . . . . . . . . . 12  |-  ( (
-g `  G ) : ( ( Base `  G )  X.  ( Base `  G ) ) --> ( Base `  G
)  ->  ( -g `  G )  Fn  (
( Base `  G )  X.  ( Base `  G
) ) )
3222, 31syl 16 . . . . . . . . . . 11  |-  ( G  e.  TopGrp  ->  ( -g `  G
)  Fn  ( (
Base `  G )  X.  ( Base `  G
) ) )
33 elpreima 5925 . . . . . . . . . . 11  |-  ( (
-g `  G )  Fn  ( ( Base `  G
)  X.  ( Base `  G ) )  -> 
( <. x ,  y
>.  e.  ( `' (
-g `  G ) " {  .0.  } )  <-> 
( <. x ,  y
>.  e.  ( ( Base `  G )  X.  ( Base `  G ) )  /\  ( ( -g `  G ) `  <. x ,  y >. )  e.  {  .0.  } ) ) )
3432, 33syl 16 . . . . . . . . . 10  |-  ( G  e.  TopGrp  ->  ( <. x ,  y >.  e.  ( `' ( -g `  G
) " {  .0.  } )  <->  ( <. x ,  y >.  e.  ( ( Base `  G
)  X.  ( Base `  G ) )  /\  ( ( -g `  G
) `  <. x ,  y >. )  e.  {  .0.  } ) ) )
35 opelxp 4970 . . . . . . . . . . . 12  |-  ( <.
x ,  y >.  e.  ( ( Base `  G
)  X.  ( Base `  G ) )  <->  ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
) )
3635anbi1i 695 . . . . . . . . . . 11  |-  ( (
<. x ,  y >.  e.  ( ( Base `  G
)  X.  ( Base `  G ) )  /\  ( ( -g `  G
) `  <. x ,  y >. )  e.  {  .0.  } )  <->  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  (
( -g `  G ) `
 <. x ,  y
>. )  e.  {  .0.  } ) )
372, 3, 15grpsubeq0 15723 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  ->  (
( x ( -g `  G ) y )  =  .0.  <->  x  =  y ) )
38373expb 1189 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G ) ) )  ->  ( ( x ( -g `  G
) y )  =  .0.  <->  x  =  y
) )
391, 38sylan 471 . . . . . . . . . . . . 13  |-  ( ( G  e.  TopGrp  /\  (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) ) )  -> 
( ( x (
-g `  G )
y )  =  .0.  <->  x  =  y ) )
40 df-ov 6196 . . . . . . . . . . . . . . 15  |-  ( x ( -g `  G
) y )  =  ( ( -g `  G
) `  <. x ,  y >. )
4140eleq1i 2528 . . . . . . . . . . . . . 14  |-  ( ( x ( -g `  G
) y )  e. 
{  .0.  }  <->  ( ( -g `  G ) `  <. x ,  y >.
)  e.  {  .0.  } )
42 ovex 6218 . . . . . . . . . . . . . . 15  |-  ( x ( -g `  G
) y )  e. 
_V
4342elsnc 4002 . . . . . . . . . . . . . 14  |-  ( ( x ( -g `  G
) y )  e. 
{  .0.  }  <->  ( x
( -g `  G ) y )  =  .0.  )
4441, 43bitr3i 251 . . . . . . . . . . . . 13  |-  ( ( ( -g `  G
) `  <. x ,  y >. )  e.  {  .0.  }  <->  ( x (
-g `  G )
y )  =  .0.  )
45 equcom 1734 . . . . . . . . . . . . 13  |-  ( y  =  x  <->  x  =  y )
4639, 44, 453bitr4g 288 . . . . . . . . . . . 12  |-  ( ( G  e.  TopGrp  /\  (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) ) )  -> 
( ( ( -g `  G ) `  <. x ,  y >. )  e.  {  .0.  }  <->  y  =  x ) )
4746pm5.32da 641 . . . . . . . . . . 11  |-  ( G  e.  TopGrp  ->  ( ( ( x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  (
( -g `  G ) `
 <. x ,  y
>. )  e.  {  .0.  } )  <->  ( ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  /\  y  =  x ) ) )
4836, 47syl5bb 257 . . . . . . . . . 10  |-  ( G  e.  TopGrp  ->  ( ( <.
x ,  y >.  e.  ( ( Base `  G
)  X.  ( Base `  G ) )  /\  ( ( -g `  G
) `  <. x ,  y >. )  e.  {  .0.  } )  <->  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  y  =  x ) ) )
4934, 48bitrd 253 . . . . . . . . 9  |-  ( G  e.  TopGrp  ->  ( <. x ,  y >.  e.  ( `' ( -g `  G
) " {  .0.  } )  <->  ( ( x  e.  ( Base `  G
)  /\  y  e.  ( Base `  G )
)  /\  y  =  x ) ) )
50 df-br 4394 . . . . . . . . 9  |-  ( x ( `' ( -g `  G ) " {  .0.  } ) y  <->  <. x ,  y >.  e.  ( `' ( -g `  G
) " {  .0.  } ) )
51 eleq1 2523 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (
y  e.  ( Base `  G )  <->  x  e.  ( Base `  G )
) )
5251biimparc 487 . . . . . . . . . . 11  |-  ( ( x  e.  ( Base `  G )  /\  y  =  x )  ->  y  e.  ( Base `  G
) )
5352pm4.71i 632 . . . . . . . . . 10  |-  ( ( x  e.  ( Base `  G )  /\  y  =  x )  <->  ( (
x  e.  ( Base `  G )  /\  y  =  x )  /\  y  e.  ( Base `  G
) ) )
54 an32 796 . . . . . . . . . 10  |-  ( ( ( x  e.  (
Base `  G )  /\  y  e.  ( Base `  G ) )  /\  y  =  x )  <->  ( ( x  e.  ( Base `  G
)  /\  y  =  x )  /\  y  e.  ( Base `  G
) ) )
5553, 54bitr4i 252 . . . . . . . . 9  |-  ( ( x  e.  ( Base `  G )  /\  y  =  x )  <->  ( (
x  e.  ( Base `  G )  /\  y  e.  ( Base `  G
) )  /\  y  =  x ) )
5649, 50, 553bitr4g 288 . . . . . . . 8  |-  ( G  e.  TopGrp  ->  ( x ( `' ( -g `  G
) " {  .0.  } ) y  <->  ( x  e.  ( Base `  G
)  /\  y  =  x ) ) )
5756opabbidv 4456 . . . . . . 7  |-  ( G  e.  TopGrp  ->  { <. x ,  y >.  |  x ( `' ( -g `  G ) " {  .0.  } ) y }  =  { <. x ,  y >.  |  ( x  e.  ( Base `  G )  /\  y  =  x ) } )
58 opabresid 5260 . . . . . . 7  |-  { <. x ,  y >.  |  ( x  e.  ( Base `  G )  /\  y  =  x ) }  =  (  _I  |`  ( Base `  G ) )
5957, 58syl6eq 2508 . . . . . 6  |-  ( G  e.  TopGrp  ->  { <. x ,  y >.  |  x ( `' ( -g `  G ) " {  .0.  } ) y }  =  (  _I  |`  ( Base `  G ) ) )
609reseq2d 5211 . . . . . 6  |-  ( G  e.  TopGrp  ->  (  _I  |`  ( Base `  G ) )  =  (  _I  |`  U. J
) )
6130, 59, 603eqtrd 2496 . . . . 5  |-  ( G  e.  TopGrp  ->  ( `' (
-g `  G ) " {  .0.  } )  =  (  _I  |`  U. J
) )
6261eleq1d 2520 . . . 4  |-  ( G  e.  TopGrp  ->  ( ( `' ( -g `  G
) " {  .0.  } )  e.  ( Clsd `  ( J  tX  J
) )  <->  (  _I  |` 
U. J )  e.  ( Clsd `  ( J  tX  J ) ) ) )
6319, 62sylibd 214 . . 3  |-  ( G  e.  TopGrp  ->  ( {  .0.  }  e.  ( Clsd `  J
)  ->  (  _I  |` 
U. J )  e.  ( Clsd `  ( J  tX  J ) ) ) )
64 topontop 18656 . . . . 5  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  J  e.  Top )
657, 64syl 16 . . . 4  |-  ( G  e.  TopGrp  ->  J  e.  Top )
6611hausdiag 19343 . . . . 5  |-  ( J  e.  Haus  <->  ( J  e. 
Top  /\  (  _I  |` 
U. J )  e.  ( Clsd `  ( J  tX  J ) ) ) )
6766baib 896 . . . 4  |-  ( J  e.  Top  ->  ( J  e.  Haus  <->  (  _I  |` 
U. J )  e.  ( Clsd `  ( J  tX  J ) ) ) )
6865, 67syl 16 . . 3  |-  ( G  e.  TopGrp  ->  ( J  e. 
Haus 
<->  (  _I  |`  U. J
)  e.  ( Clsd `  ( J  tX  J
) ) ) )
6963, 68sylibrd 234 . 2  |-  ( G  e.  TopGrp  ->  ( {  .0.  }  e.  ( Clsd `  J
)  ->  J  e.  Haus ) )
7014, 69impbid 191 1  |-  ( G  e.  TopGrp  ->  ( J  e. 
Haus 
<->  {  .0.  }  e.  ( Clsd `  J )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    C_ wss 3429   {csn 3978   <.cop 3984   U.cuni 4192   class class class wbr 4393   {copab 4450    _I cid 4732    X. cxp 4939   `'ccnv 4940   dom cdm 4941    |` cres 4943   "cima 4944   Rel wrel 4946    Fn wfn 5514   -->wf 5515   ` cfv 5519  (class class class)co 6193   Basecbs 14285   TopOpenctopn 14471   0gc0g 14489   Grpcgrp 15521   -gcsg 15524   Topctop 18623  TopOnctopon 18624   Clsdccld 18745    Cn ccn 18953   Hauscha 19037    tX ctx 19258   TopGrpctgp 19767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-1st 6680  df-2nd 6681  df-map 7319  df-0g 14491  df-topgen 14493  df-mnd 15526  df-plusf 15527  df-grp 15656  df-minusg 15657  df-sbg 15658  df-top 18628  df-bases 18630  df-topon 18631  df-topsp 18632  df-cld 18748  df-cn 18956  df-t1 19043  df-haus 19044  df-tx 19260  df-tmd 19768  df-tgp 19769
This theorem is referenced by:  tgpt1  19813  divstgphaus  19818
  Copyright terms: Public domain W3C validator