MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpconcompss Structured version   Visualization version   Unicode version

Theorem tgpconcompss 21128
Description: The identity component is a subset of any open subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
tgpconcomp.x  |-  X  =  ( Base `  G
)
tgpconcomp.z  |-  .0.  =  ( 0g `  G )
tgpconcomp.j  |-  J  =  ( TopOpen `  G )
tgpconcomp.s  |-  S  = 
U. { x  e. 
~P X  |  (  .0.  e.  x  /\  ( Jt  x )  e.  Con ) }
Assertion
Ref Expression
tgpconcompss  |-  ( ( G  e.  TopGrp  /\  T  e.  (SubGrp `  G )  /\  T  e.  J
)  ->  S  C_  T
)
Distinct variable groups:    x,  .0.    x, J    x, G    x, X
Allowed substitution hints:    S( x)    T( x)

Proof of Theorem tgpconcompss
StepHypRef Expression
1 tgpconcomp.j . . . 4  |-  J  =  ( TopOpen `  G )
2 tgpconcomp.x . . . 4  |-  X  =  ( Base `  G
)
31, 2tgptopon 21097 . . 3  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  X ) )
433ad2ant1 1029 . 2  |-  ( ( G  e.  TopGrp  /\  T  e.  (SubGrp `  G )  /\  T  e.  J
)  ->  J  e.  (TopOn `  X ) )
5 simp3 1010 . . 3  |-  ( ( G  e.  TopGrp  /\  T  e.  (SubGrp `  G )  /\  T  e.  J
)  ->  T  e.  J )
61opnsubg 21122 . . 3  |-  ( ( G  e.  TopGrp  /\  T  e.  (SubGrp `  G )  /\  T  e.  J
)  ->  T  e.  ( Clsd `  J )
)
75, 6elind 3618 . 2  |-  ( ( G  e.  TopGrp  /\  T  e.  (SubGrp `  G )  /\  T  e.  J
)  ->  T  e.  ( J  i^i  ( Clsd `  J ) ) )
8 tgpconcomp.z . . . 4  |-  .0.  =  ( 0g `  G )
98subg0cl 16825 . . 3  |-  ( T  e.  (SubGrp `  G
)  ->  .0.  e.  T )
1093ad2ant2 1030 . 2  |-  ( ( G  e.  TopGrp  /\  T  e.  (SubGrp `  G )  /\  T  e.  J
)  ->  .0.  e.  T )
11 tgpconcomp.s . . 3  |-  S  = 
U. { x  e. 
~P X  |  (  .0.  e.  x  /\  ( Jt  x )  e.  Con ) }
1211concompclo 20450 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  T  e.  ( J  i^i  ( Clsd `  J ) )  /\  .0.  e.  T
)  ->  S  C_  T
)
134, 7, 10, 12syl3anc 1268 1  |-  ( ( G  e.  TopGrp  /\  T  e.  (SubGrp `  G )  /\  T  e.  J
)  ->  S  C_  T
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   {crab 2741    i^i cin 3403    C_ wss 3404   ~Pcpw 3951   U.cuni 4198   ` cfv 5582  (class class class)co 6290   Basecbs 15121   ↾t crest 15319   TopOpenctopn 15320   0gc0g 15338  SubGrpcsubg 16811  TopOnctopon 19918   Clsdccld 20031   Conccon 20426   TopGrpctgp 21086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-oadd 7186  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fi 7925  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-rest 15321  df-0g 15340  df-topgen 15342  df-plusf 16487  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-grp 16673  df-minusg 16674  df-sbg 16675  df-subg 16814  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cld 20034  df-ntr 20035  df-cls 20036  df-cn 20243  df-cnp 20244  df-con 20427  df-tx 20577  df-hmeo 20770  df-tmd 21087  df-tgp 21088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator