MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgpconcompeqg Structured version   Unicode version

Theorem tgpconcompeqg 21112
Description: The connected component containing  A is the left coset of the identity component containing  A. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypotheses
Ref Expression
tgpconcomp.x  |-  X  =  ( Base `  G
)
tgpconcomp.z  |-  .0.  =  ( 0g `  G )
tgpconcomp.j  |-  J  =  ( TopOpen `  G )
tgpconcomp.s  |-  S  = 
U. { x  e. 
~P X  |  (  .0.  e.  x  /\  ( Jt  x )  e.  Con ) }
tgpconcompeqg.r  |-  .~  =  ( G ~QG  S )
Assertion
Ref Expression
tgpconcompeqg  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  [ A ]  .~  =  U. {
x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) } )
Distinct variable groups:    x,  .0.    x, A    x, J    x, G    x, X
Allowed substitution hints:    .~ ( x)    S( x)

Proof of Theorem tgpconcompeqg
Dummy variables  y 
z  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfec2 7370 . . . . 5  |-  ( A  e.  X  ->  [ A ]  .~  =  { z  |  A  .~  z } )
21adantl 467 . . . 4  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  [ A ]  .~  =  { z  |  A  .~  z } )
3 tgpconcomp.s . . . . . . . . 9  |-  S  = 
U. { x  e. 
~P X  |  (  .0.  e.  x  /\  ( Jt  x )  e.  Con ) }
4 ssrab2 3546 . . . . . . . . . 10  |-  { x  e.  ~P X  |  (  .0.  e.  x  /\  ( Jt  x )  e.  Con ) }  C_  ~P X
5 sspwuni 4385 . . . . . . . . . 10  |-  ( { x  e.  ~P X  |  (  .0.  e.  x  /\  ( Jt  x )  e.  Con ) } 
C_  ~P X  <->  U. { x  e.  ~P X  |  (  .0.  e.  x  /\  ( Jt  x )  e.  Con ) }  C_  X )
64, 5mpbi 211 . . . . . . . . 9  |-  U. {
x  e.  ~P X  |  (  .0.  e.  x  /\  ( Jt  x )  e.  Con ) } 
C_  X
73, 6eqsstri 3494 . . . . . . . 8  |-  S  C_  X
87a1i 11 . . . . . . 7  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  S  C_  X )
9 tgpconcomp.x . . . . . . . 8  |-  X  =  ( Base `  G
)
10 eqid 2422 . . . . . . . 8  |-  ( invg `  G )  =  ( invg `  G )
11 eqid 2422 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
12 tgpconcompeqg.r . . . . . . . 8  |-  .~  =  ( G ~QG  S )
139, 10, 11, 12eqgval 16853 . . . . . . 7  |-  ( ( G  e.  TopGrp  /\  S  C_  X )  ->  ( A  .~  z  <->  ( A  e.  X  /\  z  e.  X  /\  (
( ( invg `  G ) `  A
) ( +g  `  G
) z )  e.  S ) ) )
148, 13syldan 472 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  ( A  .~  z  <->  ( A  e.  X  /\  z  e.  X  /\  (
( ( invg `  G ) `  A
) ( +g  `  G
) z )  e.  S ) ) )
15 simp2 1006 . . . . . 6  |-  ( ( A  e.  X  /\  z  e.  X  /\  ( ( ( invg `  G ) `
 A ) ( +g  `  G ) z )  e.  S
)  ->  z  e.  X )
1614, 15syl6bi 231 . . . . 5  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  ( A  .~  z  ->  z  e.  X ) )
1716abssdv 3535 . . . 4  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  { z  |  A  .~  z }  C_  X )
182, 17eqsstrd 3498 . . 3  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  [ A ]  .~  C_  X )
19 simpr 462 . . . . 5  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  A  e.  X )
20 tgpgrp 21079 . . . . . . 7  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
21 tgpconcomp.z . . . . . . . 8  |-  .0.  =  ( 0g `  G )
229, 11, 21, 10grplinv 16699 . . . . . . 7  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( ( invg `  G ) `
 A ) ( +g  `  G ) A )  =  .0.  )
2320, 22sylan 473 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( ( invg `  G ) `  A
) ( +g  `  G
) A )  =  .0.  )
24 tgpconcomp.j . . . . . . . . 9  |-  J  =  ( TopOpen `  G )
2524, 9tgptopon 21083 . . . . . . . 8  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  X ) )
2625adantr 466 . . . . . . 7  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  J  e.  (TopOn `  X )
)
2720adantr 466 . . . . . . . 8  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  G  e.  Grp )
289, 21grpidcl 16681 . . . . . . . 8  |-  ( G  e.  Grp  ->  .0.  e.  X )
2927, 28syl 17 . . . . . . 7  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  .0.  e.  X )
303concompid 20432 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  .0.  e.  X )  ->  .0.  e.  S )
3126, 29, 30syl2anc 665 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  .0.  e.  S )
3223, 31eqeltrd 2510 . . . . 5  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( ( invg `  G ) `  A
) ( +g  `  G
) A )  e.  S )
339, 10, 11, 12eqgval 16853 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  S  C_  X )  ->  ( A  .~  A  <->  ( A  e.  X  /\  A  e.  X  /\  ( ( ( invg `  G ) `  A
) ( +g  `  G
) A )  e.  S ) ) )
348, 33syldan 472 . . . . 5  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  ( A  .~  A  <->  ( A  e.  X  /\  A  e.  X  /\  ( ( ( invg `  G ) `  A
) ( +g  `  G
) A )  e.  S ) ) )
3519, 19, 32, 34mpbir3and 1188 . . . 4  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  A  .~  A )
36 elecg 7406 . . . . 5  |-  ( ( A  e.  X  /\  A  e.  X )  ->  ( A  e.  [ A ]  .~  <->  A  .~  A ) )
3719, 19, 36syl2anc 665 . . . 4  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  ( A  e.  [ A ]  .~  <->  A  .~  A ) )
3835, 37mpbird 235 . . 3  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  A  e.  [ A ]  .~  )
399, 12, 11eqglact 16855 . . . . . . 7  |-  ( ( G  e.  Grp  /\  S  C_  X  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( z  e.  X  |->  ( A ( +g  `  G
) z ) )
" S ) )
407, 39mp3an2 1348 . . . . . 6  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( z  e.  X  |->  ( A ( +g  `  G
) z ) )
" S ) )
4120, 40sylan 473 . . . . 5  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  [ A ]  .~  =  ( ( z  e.  X  |->  ( A ( +g  `  G
) z ) )
" S ) )
4241oveq2d 6317 . . . 4  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  ( Jt  [ A ]  .~  )  =  ( Jt  ( ( z  e.  X  |->  ( A ( +g  `  G
) z ) )
" S ) ) )
43 eqid 2422 . . . . 5  |-  U. J  =  U. J
44 eqid 2422 . . . . . . 7  |-  ( z  e.  X  |->  ( A ( +g  `  G
) z ) )  =  ( z  e.  X  |->  ( A ( +g  `  G ) z ) )
4544, 9, 11, 24tgplacthmeo 21104 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
z  e.  X  |->  ( A ( +g  `  G
) z ) )  e.  ( J Homeo J ) )
46 hmeocn 20761 . . . . . 6  |-  ( ( z  e.  X  |->  ( A ( +g  `  G
) z ) )  e.  ( J Homeo J )  ->  ( z  e.  X  |->  ( A ( +g  `  G
) z ) )  e.  ( J  Cn  J ) )
4745, 46syl 17 . . . . 5  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
z  e.  X  |->  ( A ( +g  `  G
) z ) )  e.  ( J  Cn  J ) )
48 toponuni 19928 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
4926, 48syl 17 . . . . . 6  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  X  =  U. J )
507, 49syl5sseq 3512 . . . . 5  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  S  C_ 
U. J )
513concompcon 20433 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  .0.  e.  X )  ->  ( Jt  S )  e.  Con )
5226, 29, 51syl2anc 665 . . . . 5  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  ( Jt  S )  e.  Con )
5343, 47, 50, 52conima 20426 . . . 4  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  ( Jt  ( ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) " S ) )  e. 
Con )
5442, 53eqeltrd 2510 . . 3  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  ( Jt  [ A ]  .~  )  e.  Con )
55 eqid 2422 . . . 4  |-  U. {
x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) }  =  U. { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) }
5655concompss 20434 . . 3  |-  ( ( [ A ]  .~  C_  X  /\  A  e. 
[ A ]  .~  /\  ( Jt  [ A ]  .~  )  e.  Con )  ->  [ A ]  .~  C_ 
U. { x  e. 
~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) } )
5718, 38, 54, 56syl3anc 1264 . 2  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  [ A ]  .~  C_  U. { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) } )
58 elpwi 3988 . . . . . 6  |-  ( y  e.  ~P X  -> 
y  C_  X )
5944mptpreima 5343 . . . . . . . . . . . 12  |-  ( `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) " y )  =  { z  e.  X  |  ( A ( +g  `  G
) z )  e.  y }
60 ssrab2 3546 . . . . . . . . . . . 12  |-  { z  e.  X  |  ( A ( +g  `  G
) z )  e.  y }  C_  X
6159, 60eqsstri 3494 . . . . . . . . . . 11  |-  ( `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) " y ) 
C_  X
6261a1i 11 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  ( `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) "
y )  C_  X
)
6329adantr 466 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  .0.  e.  X )
649, 11, 21grprid 16684 . . . . . . . . . . . . . 14  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( A ( +g  `  G )  .0.  )  =  A )
6520, 64sylan 473 . . . . . . . . . . . . 13  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  ( A ( +g  `  G
)  .0.  )  =  A )
6665adantr 466 . . . . . . . . . . . 12  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  ( A ( +g  `  G
)  .0.  )  =  A )
67 simprrl 772 . . . . . . . . . . . 12  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  A  e.  y )
6866, 67eqeltrd 2510 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  ( A ( +g  `  G
)  .0.  )  e.  y )
69 oveq2 6309 . . . . . . . . . . . . 13  |-  ( z  =  .0.  ->  ( A ( +g  `  G
) z )  =  ( A ( +g  `  G )  .0.  )
)
7069eleq1d 2491 . . . . . . . . . . . 12  |-  ( z  =  .0.  ->  (
( A ( +g  `  G ) z )  e.  y  <->  ( A
( +g  `  G )  .0.  )  e.  y ) )
7170, 59elrab2 3231 . . . . . . . . . . 11  |-  (  .0. 
e.  ( `' ( z  e.  X  |->  ( A ( +g  `  G
) z ) )
" y )  <->  (  .0.  e.  X  /\  ( A ( +g  `  G
)  .0.  )  e.  y ) )
7263, 68, 71sylanbrc 668 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  .0.  e.  ( `' ( z  e.  X  |->  ( A ( +g  `  G
) z ) )
" y ) )
73 hmeocnvcn 20762 . . . . . . . . . . . . 13  |-  ( ( z  e.  X  |->  ( A ( +g  `  G
) z ) )  e.  ( J Homeo J )  ->  `' (
z  e.  X  |->  ( A ( +g  `  G
) z ) )  e.  ( J  Cn  J ) )
7445, 73syl 17 . . . . . . . . . . . 12  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) )  e.  ( J  Cn  J ) )
7574adantr 466 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) )  e.  ( J  Cn  J ) )
76 simprl 762 . . . . . . . . . . . 12  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  y  C_  X )
7749adantr 466 . . . . . . . . . . . 12  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  X  =  U. J )
7876, 77sseqtrd 3500 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  y  C_ 
U. J )
79 simprrr 773 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  ( Jt  y )  e.  Con )
8043, 75, 78, 79conima 20426 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  ( Jt  ( `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) "
y ) )  e. 
Con )
813concompss 20434 . . . . . . . . . 10  |-  ( ( ( `' ( z  e.  X  |->  ( A ( +g  `  G
) z ) )
" y )  C_  X  /\  .0.  e.  ( `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) "
y )  /\  ( Jt  ( `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) "
y ) )  e. 
Con )  ->  ( `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) "
y )  C_  S
)
8262, 72, 80, 81syl3anc 1264 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  ( `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) "
y )  C_  S
)
83 eqid 2422 . . . . . . . . . . . . . . . 16  |-  ( g  e.  X  |->  ( z  e.  X  |->  ( g ( +g  `  G
) z ) ) )  =  ( g  e.  X  |->  ( z  e.  X  |->  ( g ( +g  `  G
) z ) ) )
8483, 9, 11, 10grplactcnv 16741 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  Grp  /\  A  e.  X )  ->  ( ( ( g  e.  X  |->  ( z  e.  X  |->  ( g ( +g  `  G
) z ) ) ) `  A ) : X -1-1-onto-> X  /\  `' ( ( g  e.  X  |->  ( z  e.  X  |->  ( g ( +g  `  G ) z ) ) ) `  A
)  =  ( ( g  e.  X  |->  ( z  e.  X  |->  ( g ( +g  `  G
) z ) ) ) `  ( ( invg `  G
) `  A )
) ) )
8520, 84sylan 473 . . . . . . . . . . . . . 14  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( ( g  e.  X  |->  ( z  e.  X  |->  ( g ( +g  `  G ) z ) ) ) `
 A ) : X -1-1-onto-> X  /\  `' ( ( g  e.  X  |->  ( z  e.  X  |->  ( g ( +g  `  G ) z ) ) ) `  A
)  =  ( ( g  e.  X  |->  ( z  e.  X  |->  ( g ( +g  `  G
) z ) ) ) `  ( ( invg `  G
) `  A )
) ) )
8685simpld 460 . . . . . . . . . . . . 13  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( g  e.  X  |->  ( z  e.  X  |->  ( g ( +g  `  G ) z ) ) ) `  A
) : X -1-1-onto-> X )
8783, 9grplactfval 16739 . . . . . . . . . . . . . . 15  |-  ( A  e.  X  ->  (
( g  e.  X  |->  ( z  e.  X  |->  ( g ( +g  `  G ) z ) ) ) `  A
)  =  ( z  e.  X  |->  ( A ( +g  `  G
) z ) ) )
8887adantl 467 . . . . . . . . . . . . . 14  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( g  e.  X  |->  ( z  e.  X  |->  ( g ( +g  `  G ) z ) ) ) `  A
)  =  ( z  e.  X  |->  ( A ( +g  `  G
) z ) ) )
89 f1oeq1 5818 . . . . . . . . . . . . . 14  |-  ( ( ( g  e.  X  |->  ( z  e.  X  |->  ( g ( +g  `  G ) z ) ) ) `  A
)  =  ( z  e.  X  |->  ( A ( +g  `  G
) z ) )  ->  ( ( ( g  e.  X  |->  ( z  e.  X  |->  ( g ( +g  `  G
) z ) ) ) `  A ) : X -1-1-onto-> X  <->  ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) : X -1-1-onto-> X ) )
9088, 89syl 17 . . . . . . . . . . . . 13  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
( ( g  e.  X  |->  ( z  e.  X  |->  ( g ( +g  `  G ) z ) ) ) `
 A ) : X -1-1-onto-> X  <->  ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) : X -1-1-onto-> X ) )
9186, 90mpbid 213 . . . . . . . . . . . 12  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  (
z  e.  X  |->  ( A ( +g  `  G
) z ) ) : X -1-1-onto-> X )
9291adantr 466 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  (
z  e.  X  |->  ( A ( +g  `  G
) z ) ) : X -1-1-onto-> X )
93 f1ocnv 5839 . . . . . . . . . . 11  |-  ( ( z  e.  X  |->  ( A ( +g  `  G
) z ) ) : X -1-1-onto-> X  ->  `' (
z  e.  X  |->  ( A ( +g  `  G
) z ) ) : X -1-1-onto-> X )
94 f1ofun 5829 . . . . . . . . . . 11  |-  ( `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) : X -1-1-onto-> X  ->  Fun  `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) )
9592, 93, 943syl 18 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  Fun  `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) )
96 f1odm 5831 . . . . . . . . . . . 12  |-  ( `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) : X -1-1-onto-> X  ->  dom  `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) )  =  X )
9792, 93, 963syl 18 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  dom  `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) )  =  X )
9876, 97sseqtr4d 3501 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  y  C_ 
dom  `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) )
99 funimass3 6009 . . . . . . . . . 10  |-  ( ( Fun  `' ( z  e.  X  |->  ( A ( +g  `  G
) z ) )  /\  y  C_  dom  `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) )  ->  (
( `' ( z  e.  X  |->  ( A ( +g  `  G
) z ) )
" y )  C_  S 
<->  y  C_  ( `' `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) " S ) ) )
10095, 98, 99syl2anc 665 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  (
( `' ( z  e.  X  |->  ( A ( +g  `  G
) z ) )
" y )  C_  S 
<->  y  C_  ( `' `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) " S ) ) )
10182, 100mpbid 213 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  y  C_  ( `' `' ( z  e.  X  |->  ( A ( +g  `  G
) z ) )
" S ) )
10241adantr 466 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  [ A ]  .~  =  ( ( z  e.  X  |->  ( A ( +g  `  G
) z ) )
" S ) )
103 imacnvcnv 5315 . . . . . . . . 9  |-  ( `' `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) " S )  =  ( ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) " S )
104102, 103syl6eqr 2481 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  [ A ]  .~  =  ( `' `' ( z  e.  X  |->  ( A ( +g  `  G ) z ) ) " S ) )
105101, 104sseqtr4d 3501 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  ( y  C_  X  /\  ( A  e.  y  /\  ( Jt  y )  e.  Con )
) )  ->  y  C_ 
[ A ]  .~  )
106105expr 618 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  y  C_  X
)  ->  ( ( A  e.  y  /\  ( Jt  y )  e. 
Con )  ->  y  C_ 
[ A ]  .~  ) )
10758, 106sylan2 476 . . . . 5  |-  ( ( ( G  e.  TopGrp  /\  A  e.  X )  /\  y  e.  ~P X )  ->  (
( A  e.  y  /\  ( Jt  y )  e.  Con )  -> 
y  C_  [ A ]  .~  ) )
108107ralrimiva 2839 . . . 4  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  A. y  e.  ~P  X ( ( A  e.  y  /\  ( Jt  y )  e. 
Con )  ->  y  C_ 
[ A ]  .~  ) )
109 eleq2 2495 . . . . . 6  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
110 oveq2 6309 . . . . . . 7  |-  ( x  =  y  ->  ( Jt  x )  =  ( Jt  y ) )
111110eleq1d 2491 . . . . . 6  |-  ( x  =  y  ->  (
( Jt  x )  e.  Con  <->  ( Jt  y )  e.  Con ) )
112109, 111anbi12d 715 . . . . 5  |-  ( x  =  y  ->  (
( A  e.  x  /\  ( Jt  x )  e.  Con ) 
<->  ( A  e.  y  /\  ( Jt  y )  e.  Con ) ) )
113112ralrab 3233 . . . 4  |-  ( A. y  e.  { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) } y  C_  [ A ]  .~  <->  A. y  e.  ~P  X ( ( A  e.  y  /\  ( Jt  y )  e.  Con )  ->  y  C_  [ A ]  .~  ) )
114108, 113sylibr 215 . . 3  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  A. y  e.  { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) } y  C_  [ A ]  .~  )
115 unissb 4247 . . 3  |-  ( U. { x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) }  C_  [ A ]  .~  <->  A. y  e.  {
x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) } y  C_  [ A ]  .~  )
116114, 115sylibr 215 . 2  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  U. {
x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) }  C_  [ A ]  .~  )
11757, 116eqssd 3481 1  |-  ( ( G  e.  TopGrp  /\  A  e.  X )  ->  [ A ]  .~  =  U. {
x  e.  ~P X  |  ( A  e.  x  /\  ( Jt  x )  e.  Con ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   {cab 2407   A.wral 2775   {crab 2779    C_ wss 3436   ~Pcpw 3979   U.cuni 4216   class class class wbr 4420    |-> cmpt 4479   `'ccnv 4848   dom cdm 4849   "cima 4852   Fun wfun 5591   -1-1-onto->wf1o 5596   ` cfv 5597  (class class class)co 6301   [cec 7365   Basecbs 15108   +g cplusg 15177   ↾t crest 15306   TopOpenctopn 15307   0gc0g 15325   Grpcgrp 16656   invgcminusg 16657   ~QG cqg 16800  TopOnctopon 19904    Cn ccn 20226   Conccon 20412   Homeochmeo 20754   TopGrpctgp 21072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-oadd 7190  df-er 7367  df-ec 7369  df-map 7478  df-en 7574  df-fin 7577  df-fi 7927  df-rest 15308  df-0g 15327  df-topgen 15329  df-plusf 16474  df-mgm 16475  df-sgrp 16514  df-mnd 16524  df-grp 16660  df-minusg 16661  df-eqg 16803  df-top 19907  df-bases 19908  df-topon 19909  df-topsp 19910  df-cld 20020  df-cn 20229  df-cnp 20230  df-con 20413  df-tx 20563  df-hmeo 20756  df-tmd 21073  df-tgp 21074
This theorem is referenced by:  tgpconcomp  21113
  Copyright terms: Public domain W3C validator