MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgiun Structured version   Unicode version

Theorem tgiun 19771
Description: The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgiun  |-  ( ( B  e.  V  /\  A. x  e.  A  C  e.  B )  ->  U_ x  e.  A  C  e.  ( topGen `  B )
)
Distinct variable groups:    x, A    x, B    x, V
Allowed substitution hint:    C( x)

Proof of Theorem tgiun
StepHypRef Expression
1 dfiun3g 5075 . . 3  |-  ( A. x  e.  A  C  e.  B  ->  U_ x  e.  A  C  =  U. ran  ( x  e.  A  |->  C ) )
21adantl 464 . 2  |-  ( ( B  e.  V  /\  A. x  e.  A  C  e.  B )  ->  U_ x  e.  A  C  =  U. ran  ( x  e.  A  |->  C ) )
3 eqid 2402 . . . 4  |-  ( x  e.  A  |->  C )  =  ( x  e.  A  |->  C )
43rnmptss 6038 . . 3  |-  ( A. x  e.  A  C  e.  B  ->  ran  (
x  e.  A  |->  C )  C_  B )
5 eltg3i 19752 . . 3  |-  ( ( B  e.  V  /\  ran  ( x  e.  A  |->  C )  C_  B
)  ->  U. ran  (
x  e.  A  |->  C )  e.  ( topGen `  B ) )
64, 5sylan2 472 . 2  |-  ( ( B  e.  V  /\  A. x  e.  A  C  e.  B )  ->  U. ran  ( x  e.  A  |->  C )  e.  (
topGen `  B ) )
72, 6eqeltrd 2490 1  |-  ( ( B  e.  V  /\  A. x  e.  A  C  e.  B )  ->  U_ x  e.  A  C  e.  ( topGen `  B )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2753    C_ wss 3413   U.cuni 4190   U_ciun 4270    |-> cmpt 4452   ran crn 4823   ` cfv 5568   topGenctg 15050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-fv 5576  df-topgen 15056
This theorem is referenced by:  txbasval  20397
  Copyright terms: Public domain W3C validator