MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgioo Structured version   Unicode version

Theorem tgioo 21806
Description: The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
remet.1  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
tgioo.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
tgioo  |-  ( topGen ` 
ran  (,) )  =  J

Proof of Theorem tgioo
Dummy variables  x  y  z  a  b 
v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . 4  |-  D  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
21rexmet 21801 . . 3  |-  D  e.  ( *Met `  RR )
3 tgioo.2 . . . 4  |-  J  =  ( MetOpen `  D )
43mopnval 21445 . . 3  |-  ( D  e.  ( *Met `  RR )  ->  J  =  ( topGen `  ran  ( ball `  D )
) )
52, 4ax-mp 5 . 2  |-  J  =  ( topGen `  ran  ( ball `  D ) )
61blssioo 21805 . . 3  |-  ran  ( ball `  D )  C_  ran  (,)
7 elssuni 4246 . . . . . . 7  |-  ( v  e.  ran  (,)  ->  v 
C_  U. ran  (,) )
8 unirnioo 11736 . . . . . . 7  |-  RR  =  U. ran  (,)
97, 8syl6sseqr 3512 . . . . . 6  |-  ( v  e.  ran  (,)  ->  v 
C_  RR )
10 retopbas 21773 . . . . . . . . . 10  |-  ran  (,)  e. 
TopBases
1110a1i 11 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  ran  (,)  e.  TopBases )
12 simpl 459 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  v  e.  ran  (,) )
139sselda 3465 . . . . . . . . . 10  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  RR )
14 1re 9644 . . . . . . . . . . . 12  |-  1  e.  RR
151bl2ioo 21802 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  1  e.  RR )  ->  ( x ( ball `  D ) 1 )  =  ( ( x  -  1 ) (,) ( x  +  1 ) ) )
1614, 15mpan2 676 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
x ( ball `  D
) 1 )  =  ( ( x  - 
1 ) (,) (
x  +  1 ) ) )
17 peano2rem 9943 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR )
1817rexrd 9692 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  -  1 )  e.  RR* )
19 peano2re 9808 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
2019rexrd 9692 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR* )
21 ioof 11734 . . . . . . . . . . . . . 14  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
22 ffn 5744 . . . . . . . . . . . . . 14  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
2321, 22ax-mp 5 . . . . . . . . . . . . 13  |-  (,)  Fn  ( RR*  X.  RR* )
24 fnovrn 6456 . . . . . . . . . . . . 13  |-  ( ( (,)  Fn  ( RR*  X. 
RR* )  /\  (
x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* )  ->  (
( x  -  1 ) (,) ( x  +  1 ) )  e.  ran  (,) )
2523, 24mp3an1 1348 . . . . . . . . . . . 12  |-  ( ( ( x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* )  ->  (
( x  -  1 ) (,) ( x  +  1 ) )  e.  ran  (,) )
2618, 20, 25syl2anc 666 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
( x  -  1 ) (,) ( x  +  1 ) )  e.  ran  (,) )
2716, 26eqeltrd 2511 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
x ( ball `  D
) 1 )  e. 
ran  (,) )
2813, 27syl 17 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  ( x (
ball `  D )
1 )  e.  ran  (,) )
29 simpr 463 . . . . . . . . . 10  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  v )
30 1rp 11308 . . . . . . . . . . . 12  |-  1  e.  RR+
31 blcntr 21420 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  RR )  /\  x  e.  RR  /\  1  e.  RR+ )  ->  x  e.  ( x ( ball `  D
) 1 ) )
322, 30, 31mp3an13 1352 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  x  e.  ( x ( ball `  D ) 1 ) )
3313, 32syl 17 . . . . . . . . . 10  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  ( x ( ball `  D
) 1 ) )
3429, 33elind 3651 . . . . . . . . 9  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  x  e.  ( v  i^i  ( x ( ball `  D
) 1 ) ) )
35 basis2 19958 . . . . . . . . 9  |-  ( ( ( ran  (,)  e.  TopBases  /\  v  e.  ran  (,) )  /\  ( ( x ( ball `  D
) 1 )  e. 
ran  (,)  /\  x  e.  ( v  i^i  (
x ( ball `  D
) 1 ) ) ) )  ->  E. z  e.  ran  (,) ( x  e.  z  /\  z  C_  ( v  i^i  (
x ( ball `  D
) 1 ) ) ) )
3611, 12, 28, 34, 35syl22anc 1266 . . . . . . . 8  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  E. z  e.  ran  (,) ( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) )
37 ovelrn 6457 . . . . . . . . . . 11  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( z  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b ) ) )
3823, 37ax-mp 5 . . . . . . . . . 10  |-  ( z  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  z  =  ( a (,) b ) )
39 eleq2 2496 . . . . . . . . . . . . . . 15  |-  ( z  =  ( a (,) b )  ->  (
x  e.  z  <->  x  e.  ( a (,) b
) ) )
40 sseq1 3486 . . . . . . . . . . . . . . 15  |-  ( z  =  ( a (,) b )  ->  (
z  C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  <->  ( a (,) b )  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) )
4139, 40anbi12d 716 . . . . . . . . . . . . . 14  |-  ( z  =  ( a (,) b )  ->  (
( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) )  <-> 
( x  e.  ( a (,) b )  /\  ( a (,) b )  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) ) )
42 inss2 3684 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  ( x ( ball `  D ) 1 )
43 sstr 3473 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  /\  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  ( x ( ball `  D ) 1 ) )  ->  ( a (,) b )  C_  (
x ( ball `  D
) 1 ) )
4442, 43mpan2 676 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a (,) b ) 
C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  ->  ( a (,) b )  C_  (
x ( ball `  D
) 1 ) )
4544adantl 468 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b ) 
C_  ( x (
ball `  D )
1 ) )
46 elioore 11668 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( a (,) b )  ->  x  e.  RR )
4746adantr 467 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  x  e.  RR )
4847, 16syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x ( ball `  D
) 1 )  =  ( ( x  - 
1 ) (,) (
x  +  1 ) ) )
4945, 48sseqtrd 3501 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b ) 
C_  ( ( x  -  1 ) (,) ( x  +  1 ) ) )
50 dfss 3452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( a (,) b ) 
C_  ( ( x  -  1 ) (,) ( x  +  1 ) )  <->  ( a (,) b )  =  ( ( a (,) b
)  i^i  ( (
x  -  1 ) (,) ( x  + 
1 ) ) ) )
5149, 50sylib 200 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b )  =  ( ( a (,) b )  i^i  ( ( x  - 
1 ) (,) (
x  +  1 ) ) ) )
52 eliooxr 11695 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( a (,) b )  ->  (
a  e.  RR*  /\  b  e.  RR* ) )
5318, 20jca 535 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  RR  ->  (
( x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* ) )
5446, 53syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( a (,) b )  ->  (
( x  -  1 )  e.  RR*  /\  (
x  +  1 )  e.  RR* ) )
55 iooin 11672 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  ( ( x  - 
1 )  e.  RR*  /\  ( x  +  1 )  e.  RR* )
)  ->  ( (
a (,) b )  i^i  ( ( x  -  1 ) (,) ( x  +  1 ) ) )  =  ( if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a ) (,)
if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) ) ) )
5652, 54, 55syl2anc 666 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( a (,) b )  ->  (
( a (,) b
)  i^i  ( (
x  -  1 ) (,) ( x  + 
1 ) ) )  =  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) ) )
5756adantr 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
( a (,) b
)  i^i  ( (
x  -  1 ) (,) ( x  + 
1 ) ) )  =  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) ) )
5851, 57eqtrd 2464 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b )  =  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) ) )
59 mnfxr 11416 . . . . . . . . . . . . . . . . . . . 20  |- -oo  e.  RR*
6059a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  e.  RR* )
6147, 18syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  -  1 )  e.  RR* )
6252adantr 467 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a  e.  RR*  /\  b  e.  RR* ) )
6362simpld 461 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  a  e.  RR* )
6461, 63ifcld 3953 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  e.  RR* )
6562simprd 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  b  e.  RR* )
6647, 19syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  +  1 )  e.  RR )
6766rexrd 9692 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  +  1 )  e.  RR* )
6865, 67ifcld 3953 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR* )
6946, 17syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( a (,) b )  ->  (
x  -  1 )  e.  RR )
7069adantr 467 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  -  1 )  e.  RR )
71 mnflt 11427 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  -  1 )  e.  RR  -> -oo  <  ( x  -  1 ) )
7270, 71syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  <  ( x  -  1 ) )
73 xrmax2 11473 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( a  e.  RR*  /\  (
x  -  1 )  e.  RR* )  ->  (
x  -  1 )  <_  if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a ) )
7463, 61, 73syl2anc 666 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
x  -  1 )  <_  if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a ) )
7560, 61, 64, 72, 74xrltletrd 11460 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  <  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a ) )
76 simpl 459 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  x  e.  ( a (,) b
) )
7776, 58eleqtrd 2513 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  x  e.  ( if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a ) (,)
if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) ) ) )
78 eliooxr 11695 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) )  ->  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR*  /\  if ( b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR* ) )
79 ne0i 3768 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) )  ->  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) )  =/=  (/) )
80 ioon0 11664 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( if ( a  <_ 
( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR*  /\  if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR* )  ->  ( ( if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a ) (,) if ( b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) ) )  =/=  (/)  <->  if (
a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a )  <  if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) ) )
8179, 80syl5ib 223 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( if ( a  <_ 
( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR*  /\  if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR* )  ->  ( x  e.  ( if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a ) (,)
if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) ) )  ->  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  <  if ( b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) ) ) )
8278, 81mpcom 38 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) )  ->  if ( a  <_  ( x  - 
1 ) ,  ( x  -  1 ) ,  a )  < 
if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) ) )
8377, 82syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  <  if ( b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) ) )
84 xrre2 11467 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( -oo  e.  RR*  /\  if ( a  <_ 
( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR*  /\  if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR* )  /\  ( -oo  <  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  /\  if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a )  <  if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) ) )  ->  if (
a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR )
8560, 64, 68, 75, 83, 84syl32anc 1273 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  e.  RR )
86 mnfle 11437 . . . . . . . . . . . . . . . . . . . . 21  |-  ( if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a )  e.  RR*  -> -oo 
<_  if ( a  <_ 
( x  -  1 ) ,  ( x  -  1 ) ,  a ) )
8764, 86syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  <_  if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a ) )
8860, 64, 68, 87, 83xrlelttrd 11459 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  -> -oo  <  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) ) )
89 xrmin2 11475 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( b  e.  RR*  /\  (
x  +  1 )  e.  RR* )  ->  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) )  <_  ( x  +  1 ) )
9065, 67, 89syl2anc 666 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) )  <_  ( x  +  1 ) )
91 xrre 11466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) )  e. 
RR*  /\  ( x  +  1 )  e.  RR )  /\  ( -oo  <  if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) )  /\  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) )  <_  ( x  +  1 ) ) )  ->  if (
b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR )
9268, 66, 88, 90, 91syl22anc 1266 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  if ( b  <_  (
x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR )
931ioo2blex 21804 . . . . . . . . . . . . . . . . . 18  |-  ( ( if ( a  <_ 
( x  -  1 ) ,  ( x  -  1 ) ,  a )  e.  RR  /\  if ( b  <_ 
( x  +  1 ) ,  b ,  ( x  +  1 ) )  e.  RR )  ->  ( if ( a  <_  ( x  -  1 ) ,  ( x  -  1 ) ,  a ) (,) if ( b  <_  ( x  + 
1 ) ,  b ,  ( x  + 
1 ) ) )  e.  ran  ( ball `  D ) )
9485, 92, 93syl2anc 666 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  ( if ( a  <_  (
x  -  1 ) ,  ( x  - 
1 ) ,  a ) (,) if ( b  <_  ( x  +  1 ) ,  b ,  ( x  +  1 ) ) )  e.  ran  ( ball `  D ) )
9558, 94eqeltrd 2511 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b )  e.  ran  ( ball `  D ) )
96 inss1 3683 . . . . . . . . . . . . . . . . . 18  |-  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  v
97 sstr 3473 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  /\  ( v  i^i  ( x (
ball `  D )
1 ) )  C_  v )  ->  (
a (,) b ) 
C_  v )
9896, 97mpan2 676 . . . . . . . . . . . . . . . . 17  |-  ( ( a (,) b ) 
C_  ( v  i^i  ( x ( ball `  D ) 1 ) )  ->  ( a (,) b )  C_  v
)
9998adantl 468 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  (
a (,) b ) 
C_  v )
100 sseq1 3486 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( a (,) b )  ->  (
z  C_  v  <->  ( a (,) b )  C_  v
) )
10139, 100anbi12d 716 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( a (,) b )  ->  (
( x  e.  z  /\  z  C_  v
)  <->  ( x  e.  ( a (,) b
)  /\  ( a (,) b )  C_  v
) ) )
102101rspcev 3183 . . . . . . . . . . . . . . . 16  |-  ( ( ( a (,) b
)  e.  ran  ( ball `  D )  /\  ( x  e.  (
a (,) b )  /\  ( a (,) b )  C_  v
) )  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  v ) )
10395, 76, 99, 102syl12anc 1263 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  v ) )
104 blssex 21434 . . . . . . . . . . . . . . . 16  |-  ( ( D  e.  ( *Met `  RR )  /\  x  e.  RR )  ->  ( E. z  e.  ran  ( ball `  D
) ( x  e.  z  /\  z  C_  v )  <->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) )
1052, 47, 104sylancr 668 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  ( E. z  e.  ran  ( ball `  D )
( x  e.  z  /\  z  C_  v
)  <->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v ) )
106103, 105mpbid 214 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( a (,) b )  /\  ( a (,) b
)  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
)
10741, 106syl6bi 232 . . . . . . . . . . . . 13  |-  ( z  =  ( a (,) b )  ->  (
( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) )  ->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v ) )
108107a1i 11 . . . . . . . . . . . 12  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  (
z  =  ( a (,) b )  -> 
( ( x  e.  z  /\  z  C_  ( v  i^i  (
x ( ball `  D
) 1 ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) ) )
109108rexlimivv 2923 . . . . . . . . . . 11  |-  ( E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b )  ->  ( ( x  e.  z  /\  z  C_  ( v  i^i  (
x ( ball `  D
) 1 ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) )
110109imp 431 . . . . . . . . . 10  |-  ( ( E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b )  /\  (
x  e.  z  /\  z  C_  ( v  i^i  ( x ( ball `  D ) 1 ) ) ) )  ->  E. y  e.  RR+  (
x ( ball `  D
) y )  C_  v )
11138, 110sylanb 475 . . . . . . . . 9  |-  ( ( z  e.  ran  (,)  /\  ( x  e.  z  /\  z  C_  (
v  i^i  ( x
( ball `  D )
1 ) ) ) )  ->  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
)
112111rexlimiva 2914 . . . . . . . 8  |-  ( E. z  e.  ran  (,) ( x  e.  z  /\  z  C_  ( v  i^i  ( x (
ball `  D )
1 ) ) )  ->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v )
11336, 112syl 17 . . . . . . 7  |-  ( ( v  e.  ran  (,)  /\  x  e.  v )  ->  E. y  e.  RR+  ( x ( ball `  D ) y ) 
C_  v )
114113ralrimiva 2840 . . . . . 6  |-  ( v  e.  ran  (,)  ->  A. x  e.  v  E. y  e.  RR+  ( x ( ball `  D
) y )  C_  v )
1153elmopn2 21452 . . . . . . 7  |-  ( D  e.  ( *Met `  RR )  ->  (
v  e.  J  <->  ( v  C_  RR  /\  A. x  e.  v  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) ) )
1162, 115ax-mp 5 . . . . . 6  |-  ( v  e.  J  <->  ( v  C_  RR  /\  A. x  e.  v  E. y  e.  RR+  ( x (
ball `  D )
y )  C_  v
) )
1179, 114, 116sylanbrc 669 . . . . 5  |-  ( v  e.  ran  (,)  ->  v  e.  J )
118117ssriv 3469 . . . 4  |-  ran  (,)  C_  J
119118, 5sseqtri 3497 . . 3  |-  ran  (,)  C_  ( topGen `  ran  ( ball `  D ) )
120 2basgen 19998 . . 3  |-  ( ( ran  ( ball `  D
)  C_  ran  (,)  /\  ran  (,)  C_  ( topGen ` 
ran  ( ball `  D
) ) )  -> 
( topGen `  ran  ( ball `  D ) )  =  ( topGen `  ran  (,) )
)
1216, 119, 120mp2an 677 . 2  |-  ( topGen ` 
ran  ( ball `  D
) )  =  (
topGen `  ran  (,) )
1225, 121eqtr2i 2453 1  |-  ( topGen ` 
ran  (,) )  =  J
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438    e. wcel 1869    =/= wne 2619   A.wral 2776   E.wrex 2777    i^i cin 3436    C_ wss 3437   (/)c0 3762   ifcif 3910   ~Pcpw 3980   U.cuni 4217   class class class wbr 4421    X. cxp 4849   ran crn 4852    |` cres 4853    o. ccom 4855    Fn wfn 5594   -->wf 5595   ` cfv 5599  (class class class)co 6303   RRcr 9540   1c1 9542    + caddc 9544   -oocmnf 9675   RR*cxr 9676    < clt 9677    <_ cle 9678    - cmin 9862   RR+crp 11304   (,)cioo 11637   abscabs 13291   topGenctg 15329   *Metcxmt 18948   ballcbl 18950   MetOpencmopn 18953   TopBasesctb 19912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-er 7369  df-map 7480  df-en 7576  df-dom 7577  df-sdom 7578  df-sup 7960  df-inf 7961  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-3 10671  df-n0 10872  df-z 10940  df-uz 11162  df-q 11267  df-rp 11305  df-xneg 11411  df-xadd 11412  df-xmul 11413  df-ioo 11641  df-seq 12215  df-exp 12274  df-cj 13156  df-re 13157  df-im 13158  df-sqrt 13292  df-abs 13293  df-topgen 15335  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-bases 19914
This theorem is referenced by:  qdensere2  21807  rehaus  21809  resubmet  21812  tgioo2  21813  xrsmopn  21822  iccntr  21831  icccmplem3  21834  reconnlem2  21837  opnreen  21841  metdscn2  21866  metdscn2OLD  21881  evthicc  22402  opnmbllem  22551  dvlip2  22939  lhop  22960  dvcnvre  22963  nmcvcn  26323  opnrebl  30975  opnrebl2  30976  ptrecube  31860  poimirlem30  31890  opnmbllem0  31896  reheibor  32091
  Copyright terms: Public domain W3C validator