MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgdom Structured version   Unicode version

Theorem tgdom 19274
Description: A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
tgdom  |-  ( B  e.  V  ->  ( topGen `
 B )  ~<_  ~P B )

Proof of Theorem tgdom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4631 . 2  |-  ( B  e.  V  ->  ~P B  e.  _V )
2 inss1 3718 . . . . 5  |-  ( B  i^i  ~P x ) 
C_  B
3 vex 3116 . . . . . . . 8  |-  x  e. 
_V
43pwex 4630 . . . . . . 7  |-  ~P x  e.  _V
54inex2 4589 . . . . . 6  |-  ( B  i^i  ~P x )  e.  _V
65elpw 4016 . . . . 5  |-  ( ( B  i^i  ~P x
)  e.  ~P B  <->  ( B  i^i  ~P x
)  C_  B )
72, 6mpbir 209 . . . 4  |-  ( B  i^i  ~P x )  e.  ~P B
87a1i 11 . . 3  |-  ( x  e.  ( topGen `  B
)  ->  ( B  i^i  ~P x )  e. 
~P B )
9 unieq 4253 . . . . . . 7  |-  ( ( B  i^i  ~P x
)  =  ( B  i^i  ~P y )  ->  U. ( B  i^i  ~P x )  =  U. ( B  i^i  ~P y
) )
109adantl 466 . . . . . 6  |-  ( ( ( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) )  /\  ( B  i^i  ~P x
)  =  ( B  i^i  ~P y ) )  ->  U. ( B  i^i  ~P x )  =  U. ( B  i^i  ~P y ) )
11 eltg4i 19256 . . . . . . 7  |-  ( x  e.  ( topGen `  B
)  ->  x  =  U. ( B  i^i  ~P x ) )
1211ad2antrr 725 . . . . . 6  |-  ( ( ( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) )  /\  ( B  i^i  ~P x
)  =  ( B  i^i  ~P y ) )  ->  x  =  U. ( B  i^i  ~P x ) )
13 eltg4i 19256 . . . . . . 7  |-  ( y  e.  ( topGen `  B
)  ->  y  =  U. ( B  i^i  ~P y ) )
1413ad2antlr 726 . . . . . 6  |-  ( ( ( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) )  /\  ( B  i^i  ~P x
)  =  ( B  i^i  ~P y ) )  ->  y  =  U. ( B  i^i  ~P y ) )
1510, 12, 143eqtr4d 2518 . . . . 5  |-  ( ( ( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) )  /\  ( B  i^i  ~P x
)  =  ( B  i^i  ~P y ) )  ->  x  =  y )
1615ex 434 . . . 4  |-  ( ( x  e.  ( topGen `  B )  /\  y  e.  ( topGen `  B )
)  ->  ( ( B  i^i  ~P x )  =  ( B  i^i  ~P y )  ->  x  =  y ) )
17 pweq 4013 . . . . 5  |-  ( x  =  y  ->  ~P x  =  ~P y
)
1817ineq2d 3700 . . . 4  |-  ( x  =  y  ->  ( B  i^i  ~P x )  =  ( B  i^i  ~P y ) )
1916, 18impbid1 203 . . 3  |-  ( ( x  e.  ( topGen `  B )  /\  y  e.  ( topGen `  B )
)  ->  ( ( B  i^i  ~P x )  =  ( B  i^i  ~P y )  <->  x  =  y ) )
208, 19dom2 7558 . 2  |-  ( ~P B  e.  _V  ->  (
topGen `  B )  ~<_  ~P B )
211, 20syl 16 1  |-  ( B  e.  V  ->  ( topGen `
 B )  ~<_  ~P B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113    i^i cin 3475    C_ wss 3476   ~Pcpw 4010   U.cuni 4245   class class class wbr 4447   ` cfv 5588    ~<_ cdom 7514   topGenctg 14693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-dom 7518  df-topgen 14699
This theorem is referenced by:  2ndcredom  19745  kelac2lem  30642
  Copyright terms: Public domain W3C validator