MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgdif0 Structured version   Unicode version

Theorem tgdif0 19367
Description: A generated topology is not affected by the addition or removal of the empty set from the base. (Contributed by Mario Carneiro, 28-Aug-2015.)
Assertion
Ref Expression
tgdif0  |-  ( topGen `  ( B  \  { (/)
} ) )  =  ( topGen `  B )

Proof of Theorem tgdif0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 indif1 3727 . . . . . . 7  |-  ( ( B  \  { (/) } )  i^i  ~P x
)  =  ( ( B  i^i  ~P x
)  \  { (/) } )
21unieqi 4243 . . . . . 6  |-  U. (
( B  \  { (/)
} )  i^i  ~P x )  =  U. ( ( B  i^i  ~P x )  \  { (/)
} )
3 unidif0 4610 . . . . . 6  |-  U. (
( B  i^i  ~P x )  \  { (/)
} )  =  U. ( B  i^i  ~P x
)
42, 3eqtri 2472 . . . . 5  |-  U. (
( B  \  { (/)
} )  i^i  ~P x )  =  U. ( B  i^i  ~P x
)
54sseq2i 3514 . . . 4  |-  ( x 
C_  U. ( ( B 
\  { (/) } )  i^i  ~P x )  <-> 
x  C_  U. ( B  i^i  ~P x ) )
65abbii 2577 . . 3  |-  { x  |  x  C_  U. (
( B  \  { (/)
} )  i^i  ~P x ) }  =  { x  |  x  C_ 
U. ( B  i^i  ~P x ) }
7 difexg 4585 . . . 4  |-  ( B  e.  _V  ->  ( B  \  { (/) } )  e.  _V )
8 tgval 19329 . . . 4  |-  ( ( B  \  { (/) } )  e.  _V  ->  (
topGen `  ( B  \  { (/) } ) )  =  { x  |  x  C_  U. (
( B  \  { (/)
} )  i^i  ~P x ) } )
97, 8syl 16 . . 3  |-  ( B  e.  _V  ->  ( topGen `
 ( B  \  { (/) } ) )  =  { x  |  x  C_  U. (
( B  \  { (/)
} )  i^i  ~P x ) } )
10 tgval 19329 . . 3  |-  ( B  e.  _V  ->  ( topGen `
 B )  =  { x  |  x 
C_  U. ( B  i^i  ~P x ) } )
116, 9, 103eqtr4a 2510 . 2  |-  ( B  e.  _V  ->  ( topGen `
 ( B  \  { (/) } ) )  =  ( topGen `  B
) )
12 difsnexi 6593 . . . . 5  |-  ( ( B  \  { (/) } )  e.  _V  ->  B  e.  _V )
1312con3i 135 . . . 4  |-  ( -.  B  e.  _V  ->  -.  ( B  \  { (/)
} )  e.  _V )
14 fvprc 5850 . . . 4  |-  ( -.  ( B  \  { (/)
} )  e.  _V  ->  ( topGen `  ( B  \  { (/) } ) )  =  (/) )
1513, 14syl 16 . . 3  |-  ( -.  B  e.  _V  ->  (
topGen `  ( B  \  { (/) } ) )  =  (/) )
16 fvprc 5850 . . 3  |-  ( -.  B  e.  _V  ->  (
topGen `  B )  =  (/) )
1715, 16eqtr4d 2487 . 2  |-  ( -.  B  e.  _V  ->  (
topGen `  ( B  \  { (/) } ) )  =  ( topGen `  B
) )
1811, 17pm2.61i 164 1  |-  ( topGen `  ( B  \  { (/)
} ) )  =  ( topGen `  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1383    e. wcel 1804   {cab 2428   _Vcvv 3095    \ cdif 3458    i^i cin 3460    C_ wss 3461   (/)c0 3770   ~Pcpw 3997   {csn 4014   U.cuni 4234   ` cfv 5578   topGenctg 14712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-iota 5541  df-fun 5580  df-fv 5586  df-topgen 14718
This theorem is referenced by:  prdsxmslem2  20905
  Copyright terms: Public domain W3C validator