MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcnp Structured version   Unicode version

Theorem tgcnp 18879
Description: The "continuous at a point" predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
tgcn.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
tgcn.3  |-  ( ph  ->  K  =  ( topGen `  B ) )
tgcn.4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
tgcnp.5  |-  ( ph  ->  P  e.  X )
Assertion
Ref Expression
tgcnp  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. y  e.  B  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
Distinct variable groups:    x, y, B    x, F, y    x, J, y    x, K, y   
x, P, y    ph, x    x, X, y    x, Y, y
Allowed substitution hint:    ph( y)

Proof of Theorem tgcnp
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tgcn.1 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 tgcn.4 . . . 4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 tgcnp.5 . . . 4  |-  ( ph  ->  P  e.  X )
4 iscnp 18863 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
51, 2, 3, 4syl3anc 1218 . . 3  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
6 tgcn.3 . . . . . . . . 9  |-  ( ph  ->  K  =  ( topGen `  B ) )
7 topontop 18553 . . . . . . . . . 10  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
82, 7syl 16 . . . . . . . . 9  |-  ( ph  ->  K  e.  Top )
96, 8eqeltrrd 2518 . . . . . . . 8  |-  ( ph  ->  ( topGen `  B )  e.  Top )
10 tgclb 18597 . . . . . . . 8  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )
119, 10sylibr 212 . . . . . . 7  |-  ( ph  ->  B  e.  TopBases )
12 bastg 18593 . . . . . . 7  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
1311, 12syl 16 . . . . . 6  |-  ( ph  ->  B  C_  ( topGen `  B ) )
1413, 6sseqtr4d 3414 . . . . 5  |-  ( ph  ->  B  C_  K )
15 ssralv 3437 . . . . 5  |-  ( B 
C_  K  ->  ( A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) )
1614, 15syl 16 . . . 4  |-  ( ph  ->  ( A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  ->  A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) )
1716anim2d 565 . . 3  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) )  ->  ( F : X
--> Y  /\  A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
185, 17sylbid 215 . 2  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  ->  ( F : X --> Y  /\  A. y  e.  B  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
196eleq2d 2510 . . . . . . 7  |-  ( ph  ->  ( z  e.  K  <->  z  e.  ( topGen `  B
) ) )
2019biimpa 484 . . . . . 6  |-  ( (
ph  /\  z  e.  K )  ->  z  e.  ( topGen `  B )
)
21 tg2 18592 . . . . . . . . 9  |-  ( ( z  e.  ( topGen `  B )  /\  ( F `  P )  e.  z )  ->  E. y  e.  B  ( ( F `  P )  e.  y  /\  y  C_  z ) )
22 r19.29 2878 . . . . . . . . . . 11  |-  ( ( A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  /\  E. y  e.  B  ( ( F `  P )  e.  y  /\  y  C_  z ) )  ->  E. y  e.  B  ( ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  /\  ( ( F `  P )  e.  y  /\  y  C_  z
) ) )
23 sstr 3385 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F " x
)  C_  y  /\  y  C_  z )  -> 
( F " x
)  C_  z )
2423expcom 435 . . . . . . . . . . . . . . . . 17  |-  ( y 
C_  z  ->  (
( F " x
)  C_  y  ->  ( F " x ) 
C_  z ) )
2524anim2d 565 . . . . . . . . . . . . . . . 16  |-  ( y 
C_  z  ->  (
( P  e.  x  /\  ( F " x
)  C_  y )  ->  ( P  e.  x  /\  ( F " x
)  C_  z )
) )
2625reximdv 2848 . . . . . . . . . . . . . . 15  |-  ( y 
C_  z  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
) )
2726com12 31 . . . . . . . . . . . . . 14  |-  ( E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  y )  -> 
( y  C_  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
) )
2827imim2i 14 . . . . . . . . . . . . 13  |-  ( ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  ( ( F `  P )  e.  y  ->  ( y 
C_  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) )
2928imp32 433 . . . . . . . . . . . 12  |-  ( ( ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  /\  ( ( F `  P )  e.  y  /\  y  C_  z ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
)
3029rexlimivw 2858 . . . . . . . . . . 11  |-  ( E. y  e.  B  ( ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  /\  ( ( F `  P )  e.  y  /\  y  C_  z ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
)
3122, 30syl 16 . . . . . . . . . 10  |-  ( ( A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  /\  E. y  e.  B  ( ( F `  P )  e.  y  /\  y  C_  z ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
)
3231expcom 435 . . . . . . . . 9  |-  ( E. y  e.  B  ( ( F `  P
)  e.  y  /\  y  C_  z )  -> 
( A. y  e.  B  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
) )
3321, 32syl 16 . . . . . . . 8  |-  ( ( z  e.  ( topGen `  B )  /\  ( F `  P )  e.  z )  ->  ( A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) )
3433ex 434 . . . . . . 7  |-  ( z  e.  ( topGen `  B
)  ->  ( ( F `  P )  e.  z  ->  ( A. y  e.  B  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) )
3534com23 78 . . . . . 6  |-  ( z  e.  ( topGen `  B
)  ->  ( A. y  e.  B  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  ( ( F `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) )
3620, 35syl 16 . . . . 5  |-  ( (
ph  /\  z  e.  K )  ->  ( A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  ( ( F `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) )
3736ralrimdva 2827 . . . 4  |-  ( ph  ->  ( A. y  e.  B  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  ->  A. z  e.  K  ( ( F `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
) ) )
3837anim2d 565 . . 3  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) )  ->  ( F : X
--> Y  /\  A. z  e.  K  ( ( F `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) ) )
39 iscnp 18863 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. z  e.  K  ( ( F `
 P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) ) )
401, 2, 3, 39syl3anc 1218 . . 3  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. z  e.  K  ( ( F `  P
)  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
) ) ) )
4138, 40sylibrd 234 . 2  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) )  ->  F  e.  ( ( J  CnP  K
) `  P )
) )
4218, 41impbid 191 1  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. y  e.  B  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2736   E.wrex 2737    C_ wss 3349   "cima 4864   -->wf 5435   ` cfv 5439  (class class class)co 6112   topGenctg 14397   Topctop 18520  TopOnctopon 18521   TopBasesctb 18524    CnP ccnp 18851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-rab 2745  df-v 2995  df-sbc 3208  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-map 7237  df-topgen 14403  df-top 18525  df-bases 18527  df-topon 18528  df-cnp 18854
This theorem is referenced by:  txcnp  19215  ptcnp  19217  metcnp3  20137
  Copyright terms: Public domain W3C validator