MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcnp Structured version   Unicode version

Theorem tgcnp 20200
Description: The "continuous at a point" predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
tgcn.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
tgcn.3  |-  ( ph  ->  K  =  ( topGen `  B ) )
tgcn.4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
tgcnp.5  |-  ( ph  ->  P  e.  X )
Assertion
Ref Expression
tgcnp  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. y  e.  B  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
Distinct variable groups:    x, y, B    x, F, y    x, J, y    x, K, y   
x, P, y    ph, x    x, X, y    x, Y, y
Allowed substitution hint:    ph( y)

Proof of Theorem tgcnp
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tgcn.1 . . . 4  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 tgcn.4 . . . 4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 tgcnp.5 . . . 4  |-  ( ph  ->  P  e.  X )
4 iscnp 20184 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
51, 2, 3, 4syl3anc 1264 . . 3  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. y  e.  K  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
6 tgcn.3 . . . . . . . . 9  |-  ( ph  ->  K  =  ( topGen `  B ) )
7 topontop 19872 . . . . . . . . . 10  |-  ( K  e.  (TopOn `  Y
)  ->  K  e.  Top )
82, 7syl 17 . . . . . . . . 9  |-  ( ph  ->  K  e.  Top )
96, 8eqeltrrd 2518 . . . . . . . 8  |-  ( ph  ->  ( topGen `  B )  e.  Top )
10 tgclb 19917 . . . . . . . 8  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )
119, 10sylibr 215 . . . . . . 7  |-  ( ph  ->  B  e.  TopBases )
12 bastg 19912 . . . . . . 7  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
1311, 12syl 17 . . . . . 6  |-  ( ph  ->  B  C_  ( topGen `  B ) )
1413, 6sseqtr4d 3507 . . . . 5  |-  ( ph  ->  B  C_  K )
15 ssralv 3531 . . . . 5  |-  ( B 
C_  K  ->  ( A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) )
1614, 15syl 17 . . . 4  |-  ( ph  ->  ( A. y  e.  K  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  ->  A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) )
1716anim2d 567 . . 3  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) )  ->  ( F : X
--> Y  /\  A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
185, 17sylbid 218 . 2  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  ->  ( F : X --> Y  /\  A. y  e.  B  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
196eleq2d 2499 . . . . . . 7  |-  ( ph  ->  ( z  e.  K  <->  z  e.  ( topGen `  B
) ) )
2019biimpa 486 . . . . . 6  |-  ( (
ph  /\  z  e.  K )  ->  z  e.  ( topGen `  B )
)
21 tg2 19911 . . . . . . . . 9  |-  ( ( z  e.  ( topGen `  B )  /\  ( F `  P )  e.  z )  ->  E. y  e.  B  ( ( F `  P )  e.  y  /\  y  C_  z ) )
22 r19.29 2970 . . . . . . . . . . 11  |-  ( ( A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  /\  E. y  e.  B  ( ( F `  P )  e.  y  /\  y  C_  z ) )  ->  E. y  e.  B  ( ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  /\  ( ( F `  P )  e.  y  /\  y  C_  z
) ) )
23 sstr 3478 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F " x
)  C_  y  /\  y  C_  z )  -> 
( F " x
)  C_  z )
2423expcom 436 . . . . . . . . . . . . . . . . 17  |-  ( y 
C_  z  ->  (
( F " x
)  C_  y  ->  ( F " x ) 
C_  z ) )
2524anim2d 567 . . . . . . . . . . . . . . . 16  |-  ( y 
C_  z  ->  (
( P  e.  x  /\  ( F " x
)  C_  y )  ->  ( P  e.  x  /\  ( F " x
)  C_  z )
) )
2625reximdv 2906 . . . . . . . . . . . . . . 15  |-  ( y 
C_  z  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
) )
2726com12 32 . . . . . . . . . . . . . 14  |-  ( E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  y )  -> 
( y  C_  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
) )
2827imim2i 16 . . . . . . . . . . . . 13  |-  ( ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  ( ( F `  P )  e.  y  ->  ( y 
C_  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) )
2928imp32 434 . . . . . . . . . . . 12  |-  ( ( ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  /\  ( ( F `  P )  e.  y  /\  y  C_  z ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
)
3029rexlimivw 2921 . . . . . . . . . . 11  |-  ( E. y  e.  B  ( ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  /\  ( ( F `  P )  e.  y  /\  y  C_  z ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
)
3122, 30syl 17 . . . . . . . . . 10  |-  ( ( A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  /\  E. y  e.  B  ( ( F `  P )  e.  y  /\  y  C_  z ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
)
3231expcom 436 . . . . . . . . 9  |-  ( E. y  e.  B  ( ( F `  P
)  e.  y  /\  y  C_  z )  -> 
( A. y  e.  B  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
) )
3321, 32syl 17 . . . . . . . 8  |-  ( ( z  e.  ( topGen `  B )  /\  ( F `  P )  e.  z )  ->  ( A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) )
3433ex 435 . . . . . . 7  |-  ( z  e.  ( topGen `  B
)  ->  ( ( F `  P )  e.  z  ->  ( A. y  e.  B  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) )
3534com23 81 . . . . . 6  |-  ( z  e.  ( topGen `  B
)  ->  ( A. y  e.  B  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  ( ( F `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) )
3620, 35syl 17 . . . . 5  |-  ( (
ph  /\  z  e.  K )  ->  ( A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  ( ( F `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) )
3736ralrimdva 2850 . . . 4  |-  ( ph  ->  ( A. y  e.  B  ( ( F `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) )  ->  A. z  e.  K  ( ( F `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
) ) )
3837anim2d 567 . . 3  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) )  ->  ( F : X
--> Y  /\  A. z  e.  K  ( ( F `  P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) ) )
39 iscnp 20184 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( F  e.  ( ( J  CnP  K ) `  P )  <-> 
( F : X --> Y  /\  A. z  e.  K  ( ( F `
 P )  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  z ) ) ) ) )
401, 2, 3, 39syl3anc 1264 . . 3  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. z  e.  K  ( ( F `  P
)  e.  z  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  z )
) ) ) )
4138, 40sylibrd 237 . 2  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. y  e.  B  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) )  ->  F  e.  ( ( J  CnP  K
) `  P )
) )
4218, 41impbid 193 1  |-  ( ph  ->  ( F  e.  ( ( J  CnP  K
) `  P )  <->  ( F : X --> Y  /\  A. y  e.  B  ( ( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   A.wral 2782   E.wrex 2783    C_ wss 3442   "cima 4857   -->wf 5597   ` cfv 5601  (class class class)co 6305   topGenctg 15295   Topctop 19848  TopOnctopon 19849   TopBasesctb 19851    CnP ccnp 20172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-map 7482  df-topgen 15301  df-top 19852  df-bases 19853  df-topon 19854  df-cnp 20175
This theorem is referenced by:  txcnp  20566  ptcnp  20568  metcnp3  21486
  Copyright terms: Public domain W3C validator