MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcmp Unicode version

Theorem tgcmp 17418
Description: A topology generated by a basis is compact iff open covers drawn from the basis have finite subcovers. (See also alexsub 18029, which further specializes to subbases, assuming the ultrafilter lemma.) (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
tgcmp  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  <->  A. y  e.  ~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
Distinct variable groups:    y, z, B    y, X, z

Proof of Theorem tgcmp
Dummy variables  t 
f  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2404 . . . . 5  |-  U. ( topGen `
 B )  = 
U. ( topGen `  B
)
21iscmp 17405 . . . 4  |-  ( (
topGen `  B )  e. 
Comp 
<->  ( ( topGen `  B
)  e.  Top  /\  A. y  e.  ~P  ( topGen `
 B ) ( U. ( topGen `  B
)  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. ( topGen `  B
)  =  U. z
) ) )
32simprbi 451 . . 3  |-  ( (
topGen `  B )  e. 
Comp  ->  A. y  e.  ~P  ( topGen `  B )
( U. ( topGen `  B )  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. ( topGen `  B
)  =  U. z
) )
4 unitg 16987 . . . . . . . 8  |-  ( B  e.  TopBases  ->  U. ( topGen `  B
)  =  U. B
)
5 eqtr3 2423 . . . . . . . 8  |-  ( ( U. ( topGen `  B
)  =  U. B  /\  X  =  U. B )  ->  U. ( topGen `
 B )  =  X )
64, 5sylan 458 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  ->  U. ( topGen `  B )  =  X )
76eqeq1d 2412 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( U. ( topGen `  B )  =  U. y 
<->  X  =  U. y
) )
86eqeq1d 2412 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( U. ( topGen `  B )  =  U. z 
<->  X  =  U. z
) )
98rexbidv 2687 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( E. z  e.  ( ~P y  i^i 
Fin ) U. ( topGen `
 B )  = 
U. z  <->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) )
107, 9imbi12d 312 . . . . 5  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( U. ( topGen `
 B )  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. ( topGen `
 B )  = 
U. z )  <->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
1110ralbidv 2686 . . . 4  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  ( topGen `  B
) ( U. ( topGen `
 B )  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. ( topGen `
 B )  = 
U. z )  <->  A. y  e.  ~P  ( topGen `  B
) ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
12 bastg 16986 . . . . . . 7  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
1312adantr 452 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  ->  B  C_  ( topGen `  B
) )
14 sspwb 4373 . . . . . 6  |-  ( B 
C_  ( topGen `  B
)  <->  ~P B  C_  ~P ( topGen `  B )
)
1513, 14sylib 189 . . . . 5  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  ->  ~P B  C_  ~P ( topGen `
 B ) )
16 ssralv 3367 . . . . 5  |-  ( ~P B  C_  ~P ( topGen `
 B )  -> 
( A. y  e. 
~P  ( topGen `  B
) ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )  ->  A. y  e.  ~P  B ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
1715, 16syl 16 . . . 4  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  ( topGen `  B
) ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )  ->  A. y  e.  ~P  B ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
1811, 17sylbid 207 . . 3  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  ( topGen `  B
) ( U. ( topGen `
 B )  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. ( topGen `
 B )  = 
U. z )  ->  A. y  e.  ~P  B ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
193, 18syl5 30 . 2  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  ->  A. y  e.  ~P  B
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) ) )
20 elpwi 3767 . . . . 5  |-  ( u  e.  ~P ( topGen `  B )  ->  u  C_  ( topGen `  B )
)
21 simprr 734 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  X  =  U. u
)
22 simprl 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  u  C_  ( topGen `  B
) )
2322sselda 3308 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  t  e.  u
)  ->  t  e.  ( topGen `  B )
)
2423adantrr 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( t  e.  u  /\  y  e.  t ) )  -> 
t  e.  ( topGen `  B ) )
25 simprr 734 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( t  e.  u  /\  y  e.  t ) )  -> 
y  e.  t )
26 tg2 16985 . . . . . . . . . . . . . . . 16  |-  ( ( t  e.  ( topGen `  B )  /\  y  e.  t )  ->  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) )
2724, 25, 26syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( t  e.  u  /\  y  e.  t ) )  ->  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) )
2827expr 599 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  t  e.  u
)  ->  ( y  e.  t  ->  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) ) )
2928reximdva 2778 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( E. t  e.  u  y  e.  t  ->  E. t  e.  u  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) ) )
30 eluni2 3979 . . . . . . . . . . . . 13  |-  ( y  e.  U. u  <->  E. t  e.  u  y  e.  t )
31 elunirab 3988 . . . . . . . . . . . . . 14  |-  ( y  e.  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  <->  E. w  e.  B  ( y  e.  w  /\  E. t  e.  u  w  C_  t
) )
32 r19.42v 2822 . . . . . . . . . . . . . . 15  |-  ( E. t  e.  u  ( y  e.  w  /\  w  C_  t )  <->  ( y  e.  w  /\  E. t  e.  u  w  C_  t
) )
3332rexbii 2691 . . . . . . . . . . . . . 14  |-  ( E. w  e.  B  E. t  e.  u  (
y  e.  w  /\  w  C_  t )  <->  E. w  e.  B  ( y  e.  w  /\  E. t  e.  u  w  C_  t
) )
34 rexcom 2829 . . . . . . . . . . . . . 14  |-  ( E. w  e.  B  E. t  e.  u  (
y  e.  w  /\  w  C_  t )  <->  E. t  e.  u  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) )
3531, 33, 343bitr2i 265 . . . . . . . . . . . . 13  |-  ( y  e.  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  <->  E. t  e.  u  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) )
3629, 30, 353imtr4g 262 . . . . . . . . . . . 12  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( y  e.  U. u  ->  y  e.  U. { w  e.  B  |  E. t  e.  u  w  C_  t } ) )
3736ssrdv 3314 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  U. u  C_  U. {
w  e.  B  |  E. t  e.  u  w  C_  t } )
3821, 37eqsstrd 3342 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  X  C_  U. { w  e.  B  |  E. t  e.  u  w  C_  t } )
39 ssrab2 3388 . . . . . . . . . . . 12  |-  { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  B
4039unissi 3998 . . . . . . . . . . 11  |-  U. {
w  e.  B  |  E. t  e.  u  w  C_  t }  C_  U. B
41 simplr 732 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  X  =  U. B )
4240, 41syl5sseqr 3357 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  X )
4338, 42eqssd 3325 . . . . . . . . 9  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  X  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t } )
44 elpw2g 4323 . . . . . . . . . . . 12  |-  ( B  e.  TopBases  ->  ( { w  e.  B  |  E. t  e.  u  w  C_  t }  e.  ~P B 
<->  { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  B ) )
4544ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( { w  e.  B  |  E. t  e.  u  w  C_  t }  e.  ~P B  <->  { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  B ) )
4639, 45mpbiri 225 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  { w  e.  B  |  E. t  e.  u  w  C_  t }  e.  ~P B )
47 unieq 3984 . . . . . . . . . . . . 13  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  U. y  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t } )
4847eqeq2d 2415 . . . . . . . . . . . 12  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ( X  = 
U. y  <->  X  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t } ) )
49 pweq 3762 . . . . . . . . . . . . . 14  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ~P y  =  ~P { w  e.  B  |  E. t  e.  u  w  C_  t } )
5049ineq1d 3501 . . . . . . . . . . . . 13  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ( ~P y  i^i  Fin )  =  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) )
5150rexeqdv 2871 . . . . . . . . . . . 12  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ( E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z  <->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) )
5248, 51imbi12d 312 . . . . . . . . . . 11  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ( ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  <->  ( X  = 
U. { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) ) )
5352rspcv 3008 . . . . . . . . . 10  |-  ( { w  e.  B  |  E. t  e.  u  w  C_  t }  e.  ~P B  ->  ( A. y  e.  ~P  B
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z )  ->  ( X  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) ) )
5446, 53syl 16 . . . . . . . . 9  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  ( X  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) ) )
5543, 54mpid 39 . . . . . . . 8  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) )
56 elfpw 7366 . . . . . . . . . . . . 13  |-  ( z  e.  ( ~P {
w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  <->  ( z  C_  { w  e.  B  |  E. t  e.  u  w  C_  t }  /\  z  e.  Fin )
)
5756simprbi 451 . . . . . . . . . . . 12  |-  ( z  e.  ( ~P {
w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  ->  z  e.  Fin )
5857ad2antrl 709 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  -> 
z  e.  Fin )
5956simplbi 447 . . . . . . . . . . . . 13  |-  ( z  e.  ( ~P {
w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  ->  z  C_  { w  e.  B  |  E. t  e.  u  w  C_  t } )
6059ad2antrl 709 . . . . . . . . . . . 12  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  -> 
z  C_  { w  e.  B  |  E. t  e.  u  w  C_  t } )
61 ssrab 3381 . . . . . . . . . . . . 13  |-  ( z 
C_  { w  e.  B  |  E. t  e.  u  w  C_  t } 
<->  ( z  C_  B  /\  A. w  e.  z  E. t  e.  u  w  C_  t ) )
6261simprbi 451 . . . . . . . . . . . 12  |-  ( z 
C_  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  A. w  e.  z  E. t  e.  u  w  C_  t )
6360, 62syl 16 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  ->  A. w  e.  z  E. t  e.  u  w  C_  t )
64 sseq2 3330 . . . . . . . . . . . 12  |-  ( t  =  ( f `  w )  ->  (
w  C_  t  <->  w  C_  (
f `  w )
) )
6564ac6sfi 7310 . . . . . . . . . . 11  |-  ( ( z  e.  Fin  /\  A. w  e.  z  E. t  e.  u  w  C_  t )  ->  E. f
( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )
6658, 63, 65syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  ->  E. f ( f : z --> u  /\  A. w  e.  z  w  C_  ( f `  w
) ) )
67 frn 5556 . . . . . . . . . . . . 13  |-  ( f : z --> u  ->  ran  f  C_  u )
6867ad2antrl 709 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  ran  f  C_  u )
69 ffn 5550 . . . . . . . . . . . . . . 15  |-  ( f : z --> u  -> 
f  Fn  z )
70 dffn4 5618 . . . . . . . . . . . . . . 15  |-  ( f  Fn  z  <->  f :
z -onto-> ran  f )
7169, 70sylib 189 . . . . . . . . . . . . . 14  |-  ( f : z --> u  -> 
f : z -onto-> ran  f )
7271adantr 452 . . . . . . . . . . . . 13  |-  ( ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
)  ->  f :
z -onto-> ran  f )
73 fofi 7351 . . . . . . . . . . . . 13  |-  ( ( z  e.  Fin  /\  f : z -onto-> ran  f
)  ->  ran  f  e. 
Fin )
7458, 72, 73syl2an 464 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  ran  f  e.  Fin )
75 elfpw 7366 . . . . . . . . . . . 12  |-  ( ran  f  e.  ( ~P u  i^i  Fin )  <->  ( ran  f  C_  u  /\  ran  f  e.  Fin ) )
7668, 74, 75sylanbrc 646 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  ran  f  e.  ( ~P u  i^i  Fin ) )
77 simplrr 738 . . . . . . . . . . . . 13  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  X  =  U. z )
78 uniiun 4104 . . . . . . . . . . . . . . . 16  |-  U. z  =  U_ w  e.  z  w
79 ss2iun 4068 . . . . . . . . . . . . . . . 16  |-  ( A. w  e.  z  w  C_  ( f `  w
)  ->  U_ w  e.  z  w  C_  U_ w  e.  z  ( f `  w ) )
8078, 79syl5eqss 3352 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  z  w  C_  ( f `  w
)  ->  U. z  C_ 
U_ w  e.  z  ( f `  w
) )
8180ad2antll 710 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U. z  C_ 
U_ w  e.  z  ( f `  w
) )
82 fniunfv 5953 . . . . . . . . . . . . . . . 16  |-  ( f  Fn  z  ->  U_ w  e.  z  ( f `  w )  =  U. ran  f )
8369, 82syl 16 . . . . . . . . . . . . . . 15  |-  ( f : z --> u  ->  U_ w  e.  z 
( f `  w
)  =  U. ran  f )
8483ad2antrl 709 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U_ w  e.  z  ( f `  w )  =  U. ran  f )
8581, 84sseqtrd 3344 . . . . . . . . . . . . 13  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U. z  C_ 
U. ran  f )
8677, 85eqsstrd 3342 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  X  C_ 
U. ran  f )
8768unissd 3999 . . . . . . . . . . . . 13  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U. ran  f  C_  U. u )
8821ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  X  =  U. u )
8987, 88sseqtr4d 3345 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U. ran  f  C_  X )
9086, 89eqssd 3325 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  X  =  U. ran  f )
91 unieq 3984 . . . . . . . . . . . . 13  |-  ( v  =  ran  f  ->  U. v  =  U. ran  f )
9291eqeq2d 2415 . . . . . . . . . . . 12  |-  ( v  =  ran  f  -> 
( X  =  U. v 
<->  X  =  U. ran  f ) )
9392rspcev 3012 . . . . . . . . . . 11  |-  ( ( ran  f  e.  ( ~P u  i^i  Fin )  /\  X  =  U. ran  f )  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v )
9476, 90, 93syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v )
9566, 94exlimddv 1645 . . . . . . . . 9  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  ->  E. v  e.  ( ~P u  i^i  Fin ) X  =  U. v
)
9695rexlimdvaa 2791 . . . . . . . 8  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z  ->  E. v  e.  ( ~P u  i^i  Fin ) X  =  U. v ) )
9755, 96syld 42 . . . . . . 7  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) )
9897expr 599 . . . . . 6  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  u  C_  ( topGen `
 B ) )  ->  ( X  = 
U. u  ->  ( A. y  e.  ~P  B ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )  ->  E. v  e.  ( ~P u  i^i  Fin ) X  =  U. v
) ) )
9998com23 74 . . . . 5  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  u  C_  ( topGen `
 B ) )  ->  ( A. y  e.  ~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  ( X  =  U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
10020, 99sylan2 461 . . . 4  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  u  e.  ~P ( topGen `  B )
)  ->  ( A. y  e.  ~P  B
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z )  ->  ( X  =  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) X  =  U. v ) ) )
101100ralrimdva 2756 . . 3  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  A. u  e.  ~P  ( topGen `  B
) ( X  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
102 tgcl 16989 . . . . . 6  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )
103102adantr 452 . . . . 5  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( topGen `  B )  e.  Top )
1041iscmp 17405 . . . . . 6  |-  ( (
topGen `  B )  e. 
Comp 
<->  ( ( topGen `  B
)  e.  Top  /\  A. u  e.  ~P  ( topGen `
 B ) ( U. ( topGen `  B
)  =  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) U. ( topGen `  B
)  =  U. v
) ) )
105104baib 872 . . . . 5  |-  ( (
topGen `  B )  e. 
Top  ->  ( ( topGen `  B )  e.  Comp  <->  A. u  e.  ~P  ( topGen `
 B ) ( U. ( topGen `  B
)  =  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) U. ( topGen `  B
)  =  U. v
) ) )
106103, 105syl 16 . . . 4  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  <->  A. u  e.  ~P  ( topGen `  B
) ( U. ( topGen `
 B )  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) U. ( topGen `
 B )  = 
U. v ) ) )
1076eqeq1d 2412 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( U. ( topGen `  B )  =  U. u 
<->  X  =  U. u
) )
1086eqeq1d 2412 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( U. ( topGen `  B )  =  U. v 
<->  X  =  U. v
) )
109108rexbidv 2687 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( E. v  e.  ( ~P u  i^i 
Fin ) U. ( topGen `
 B )  = 
U. v  <->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) )
110107, 109imbi12d 312 . . . . 5  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( U. ( topGen `
 B )  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) U. ( topGen `
 B )  = 
U. v )  <->  ( X  =  U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
111110ralbidv 2686 . . . 4  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. u  e. 
~P  ( topGen `  B
) ( U. ( topGen `
 B )  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) U. ( topGen `
 B )  = 
U. v )  <->  A. u  e.  ~P  ( topGen `  B
) ( X  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
112106, 111bitrd 245 . . 3  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  <->  A. u  e.  ~P  ( topGen `  B
) ( X  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
113101, 112sylibrd 226 . 2  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  ( topGen `  B )  e.  Comp ) )
11419, 113impbid 184 1  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  <->  A. y  e.  ~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   {crab 2670    i^i cin 3279    C_ wss 3280   ~Pcpw 3759   U.cuni 3975   U_ciun 4053   ran crn 4838    Fn wfn 5408   -->wf 5409   -onto->wfo 5411   ` cfv 5413   Fincfn 7068   topGenctg 13620   Topctop 16913   TopBasesctb 16917   Compccmp 17403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-1o 6683  df-er 6864  df-en 7069  df-dom 7070  df-fin 7072  df-topgen 13622  df-top 16918  df-bases 16920  df-cmp 17404
  Copyright terms: Public domain W3C validator