MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcmp Structured version   Unicode version

Theorem tgcmp 20408
Description: A topology generated by a basis is compact iff open covers drawn from the basis have finite subcovers. (See also alexsub 21052, which further specializes to subbases, assuming the ultrafilter lemma.) (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
tgcmp  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  <->  A. y  e.  ~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
Distinct variable groups:    y, z, B    y, X, z

Proof of Theorem tgcmp
Dummy variables  t 
f  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2423 . . . . 5  |-  U. ( topGen `
 B )  = 
U. ( topGen `  B
)
21iscmp 20395 . . . 4  |-  ( (
topGen `  B )  e. 
Comp 
<->  ( ( topGen `  B
)  e.  Top  /\  A. y  e.  ~P  ( topGen `
 B ) ( U. ( topGen `  B
)  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. ( topGen `  B
)  =  U. z
) ) )
32simprbi 466 . . 3  |-  ( (
topGen `  B )  e. 
Comp  ->  A. y  e.  ~P  ( topGen `  B )
( U. ( topGen `  B )  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. ( topGen `  B
)  =  U. z
) )
4 unitg 19974 . . . . . . . 8  |-  ( B  e.  TopBases  ->  U. ( topGen `  B
)  =  U. B
)
5 eqtr3 2451 . . . . . . . 8  |-  ( ( U. ( topGen `  B
)  =  U. B  /\  X  =  U. B )  ->  U. ( topGen `
 B )  =  X )
64, 5sylan 474 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  ->  U. ( topGen `  B )  =  X )
76eqeq1d 2425 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( U. ( topGen `  B )  =  U. y 
<->  X  =  U. y
) )
86eqeq1d 2425 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( U. ( topGen `  B )  =  U. z 
<->  X  =  U. z
) )
98rexbidv 2940 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( E. z  e.  ( ~P y  i^i 
Fin ) U. ( topGen `
 B )  = 
U. z  <->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) )
107, 9imbi12d 322 . . . . 5  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( U. ( topGen `
 B )  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. ( topGen `
 B )  = 
U. z )  <->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
1110ralbidv 2865 . . . 4  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  ( topGen `  B
) ( U. ( topGen `
 B )  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. ( topGen `
 B )  = 
U. z )  <->  A. y  e.  ~P  ( topGen `  B
) ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
12 bastg 19973 . . . . . . 7  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
1312adantr 467 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  ->  B  C_  ( topGen `  B
) )
14 sspwb 4668 . . . . . 6  |-  ( B 
C_  ( topGen `  B
)  <->  ~P B  C_  ~P ( topGen `  B )
)
1513, 14sylib 200 . . . . 5  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  ->  ~P B  C_  ~P ( topGen `
 B ) )
16 ssralv 3526 . . . . 5  |-  ( ~P B  C_  ~P ( topGen `
 B )  -> 
( A. y  e. 
~P  ( topGen `  B
) ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )  ->  A. y  e.  ~P  B ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
1715, 16syl 17 . . . 4  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  ( topGen `  B
) ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )  ->  A. y  e.  ~P  B ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
1811, 17sylbid 219 . . 3  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  ( topGen `  B
) ( U. ( topGen `
 B )  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. ( topGen `
 B )  = 
U. z )  ->  A. y  e.  ~P  B ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
193, 18syl5 34 . 2  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  ->  A. y  e.  ~P  B
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) ) )
20 elpwi 3989 . . . . 5  |-  ( u  e.  ~P ( topGen `  B )  ->  u  C_  ( topGen `  B )
)
21 simprr 765 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  X  =  U. u
)
22 simprl 763 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  u  C_  ( topGen `  B
) )
2322sselda 3465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  t  e.  u
)  ->  t  e.  ( topGen `  B )
)
2423adantrr 722 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( t  e.  u  /\  y  e.  t ) )  -> 
t  e.  ( topGen `  B ) )
25 simprr 765 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( t  e.  u  /\  y  e.  t ) )  -> 
y  e.  t )
26 tg2 19972 . . . . . . . . . . . . . . . 16  |-  ( ( t  e.  ( topGen `  B )  /\  y  e.  t )  ->  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) )
2724, 25, 26syl2anc 666 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( t  e.  u  /\  y  e.  t ) )  ->  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) )
2827expr 619 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  t  e.  u
)  ->  ( y  e.  t  ->  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) ) )
2928reximdva 2901 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( E. t  e.  u  y  e.  t  ->  E. t  e.  u  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) ) )
30 eluni2 4221 . . . . . . . . . . . . 13  |-  ( y  e.  U. u  <->  E. t  e.  u  y  e.  t )
31 elunirab 4229 . . . . . . . . . . . . . 14  |-  ( y  e.  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  <->  E. w  e.  B  ( y  e.  w  /\  E. t  e.  u  w  C_  t
) )
32 r19.42v 2984 . . . . . . . . . . . . . . 15  |-  ( E. t  e.  u  ( y  e.  w  /\  w  C_  t )  <->  ( y  e.  w  /\  E. t  e.  u  w  C_  t
) )
3332rexbii 2928 . . . . . . . . . . . . . 14  |-  ( E. w  e.  B  E. t  e.  u  (
y  e.  w  /\  w  C_  t )  <->  E. w  e.  B  ( y  e.  w  /\  E. t  e.  u  w  C_  t
) )
34 rexcom 2991 . . . . . . . . . . . . . 14  |-  ( E. w  e.  B  E. t  e.  u  (
y  e.  w  /\  w  C_  t )  <->  E. t  e.  u  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) )
3531, 33, 343bitr2i 277 . . . . . . . . . . . . 13  |-  ( y  e.  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  <->  E. t  e.  u  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) )
3629, 30, 353imtr4g 274 . . . . . . . . . . . 12  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( y  e.  U. u  ->  y  e.  U. { w  e.  B  |  E. t  e.  u  w  C_  t } ) )
3736ssrdv 3471 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  U. u  C_  U. {
w  e.  B  |  E. t  e.  u  w  C_  t } )
3821, 37eqsstrd 3499 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  X  C_  U. { w  e.  B  |  E. t  e.  u  w  C_  t } )
39 ssrab2 3547 . . . . . . . . . . . 12  |-  { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  B
4039unissi 4240 . . . . . . . . . . 11  |-  U. {
w  e.  B  |  E. t  e.  u  w  C_  t }  C_  U. B
41 simplr 761 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  X  =  U. B )
4240, 41syl5sseqr 3514 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  X )
4338, 42eqssd 3482 . . . . . . . . 9  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  X  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t } )
44 elpw2g 4585 . . . . . . . . . . . 12  |-  ( B  e.  TopBases  ->  ( { w  e.  B  |  E. t  e.  u  w  C_  t }  e.  ~P B 
<->  { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  B ) )
4544ad2antrr 731 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( { w  e.  B  |  E. t  e.  u  w  C_  t }  e.  ~P B  <->  { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  B ) )
4639, 45mpbiri 237 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  { w  e.  B  |  E. t  e.  u  w  C_  t }  e.  ~P B )
47 unieq 4225 . . . . . . . . . . . . 13  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  U. y  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t } )
4847eqeq2d 2437 . . . . . . . . . . . 12  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ( X  = 
U. y  <->  X  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t } ) )
49 pweq 3983 . . . . . . . . . . . . . 14  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ~P y  =  ~P { w  e.  B  |  E. t  e.  u  w  C_  t } )
5049ineq1d 3664 . . . . . . . . . . . . 13  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ( ~P y  i^i  Fin )  =  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) )
5150rexeqdv 3033 . . . . . . . . . . . 12  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ( E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z  <->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) )
5248, 51imbi12d 322 . . . . . . . . . . 11  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ( ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  <->  ( X  = 
U. { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) ) )
5352rspcv 3179 . . . . . . . . . 10  |-  ( { w  e.  B  |  E. t  e.  u  w  C_  t }  e.  ~P B  ->  ( A. y  e.  ~P  B
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z )  ->  ( X  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) ) )
5446, 53syl 17 . . . . . . . . 9  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  ( X  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) ) )
5543, 54mpid 43 . . . . . . . 8  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) )
56 elfpw 7880 . . . . . . . . . . . . 13  |-  ( z  e.  ( ~P {
w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  <->  ( z  C_  { w  e.  B  |  E. t  e.  u  w  C_  t }  /\  z  e.  Fin )
)
5756simprbi 466 . . . . . . . . . . . 12  |-  ( z  e.  ( ~P {
w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  ->  z  e.  Fin )
5857ad2antrl 733 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  -> 
z  e.  Fin )
5956simplbi 462 . . . . . . . . . . . . 13  |-  ( z  e.  ( ~P {
w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  ->  z  C_  { w  e.  B  |  E. t  e.  u  w  C_  t } )
6059ad2antrl 733 . . . . . . . . . . . 12  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  -> 
z  C_  { w  e.  B  |  E. t  e.  u  w  C_  t } )
61 ssrab 3540 . . . . . . . . . . . . 13  |-  ( z 
C_  { w  e.  B  |  E. t  e.  u  w  C_  t } 
<->  ( z  C_  B  /\  A. w  e.  z  E. t  e.  u  w  C_  t ) )
6261simprbi 466 . . . . . . . . . . . 12  |-  ( z 
C_  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  A. w  e.  z  E. t  e.  u  w  C_  t )
6360, 62syl 17 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  ->  A. w  e.  z  E. t  e.  u  w  C_  t )
64 sseq2 3487 . . . . . . . . . . . 12  |-  ( t  =  ( f `  w )  ->  (
w  C_  t  <->  w  C_  (
f `  w )
) )
6564ac6sfi 7819 . . . . . . . . . . 11  |-  ( ( z  e.  Fin  /\  A. w  e.  z  E. t  e.  u  w  C_  t )  ->  E. f
( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )
6658, 63, 65syl2anc 666 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  ->  E. f ( f : z --> u  /\  A. w  e.  z  w  C_  ( f `  w
) ) )
67 frn 5750 . . . . . . . . . . . . 13  |-  ( f : z --> u  ->  ran  f  C_  u )
6867ad2antrl 733 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  ran  f  C_  u )
69 ffn 5744 . . . . . . . . . . . . . . 15  |-  ( f : z --> u  -> 
f  Fn  z )
70 dffn4 5814 . . . . . . . . . . . . . . 15  |-  ( f  Fn  z  <->  f :
z -onto-> ran  f )
7169, 70sylib 200 . . . . . . . . . . . . . 14  |-  ( f : z --> u  -> 
f : z -onto-> ran  f )
7271adantr 467 . . . . . . . . . . . . 13  |-  ( ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
)  ->  f :
z -onto-> ran  f )
73 fofi 7864 . . . . . . . . . . . . 13  |-  ( ( z  e.  Fin  /\  f : z -onto-> ran  f
)  ->  ran  f  e. 
Fin )
7458, 72, 73syl2an 480 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  ran  f  e.  Fin )
75 elfpw 7880 . . . . . . . . . . . 12  |-  ( ran  f  e.  ( ~P u  i^i  Fin )  <->  ( ran  f  C_  u  /\  ran  f  e.  Fin ) )
7668, 74, 75sylanbrc 669 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  ran  f  e.  ( ~P u  i^i  Fin ) )
77 simplrr 770 . . . . . . . . . . . . 13  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  X  =  U. z )
78 uniiun 4350 . . . . . . . . . . . . . . . 16  |-  U. z  =  U_ w  e.  z  w
79 ss2iun 4313 . . . . . . . . . . . . . . . 16  |-  ( A. w  e.  z  w  C_  ( f `  w
)  ->  U_ w  e.  z  w  C_  U_ w  e.  z  ( f `  w ) )
8078, 79syl5eqss 3509 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  z  w  C_  ( f `  w
)  ->  U. z  C_ 
U_ w  e.  z  ( f `  w
) )
8180ad2antll 734 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U. z  C_ 
U_ w  e.  z  ( f `  w
) )
82 fniunfv 6165 . . . . . . . . . . . . . . . 16  |-  ( f  Fn  z  ->  U_ w  e.  z  ( f `  w )  =  U. ran  f )
8369, 82syl 17 . . . . . . . . . . . . . . 15  |-  ( f : z --> u  ->  U_ w  e.  z 
( f `  w
)  =  U. ran  f )
8483ad2antrl 733 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U_ w  e.  z  ( f `  w )  =  U. ran  f )
8581, 84sseqtrd 3501 . . . . . . . . . . . . 13  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U. z  C_ 
U. ran  f )
8677, 85eqsstrd 3499 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  X  C_ 
U. ran  f )
8768unissd 4241 . . . . . . . . . . . . 13  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U. ran  f  C_  U. u )
8821ad2antrr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  X  =  U. u )
8987, 88sseqtr4d 3502 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U. ran  f  C_  X )
9086, 89eqssd 3482 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  X  =  U. ran  f )
91 unieq 4225 . . . . . . . . . . . . 13  |-  ( v  =  ran  f  ->  U. v  =  U. ran  f )
9291eqeq2d 2437 . . . . . . . . . . . 12  |-  ( v  =  ran  f  -> 
( X  =  U. v 
<->  X  =  U. ran  f ) )
9392rspcev 3183 . . . . . . . . . . 11  |-  ( ( ran  f  e.  ( ~P u  i^i  Fin )  /\  X  =  U. ran  f )  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v )
9476, 90, 93syl2anc 666 . . . . . . . . . 10  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v )
9566, 94exlimddv 1771 . . . . . . . . 9  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  ->  E. v  e.  ( ~P u  i^i  Fin ) X  =  U. v
)
9695rexlimdvaa 2919 . . . . . . . 8  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z  ->  E. v  e.  ( ~P u  i^i  Fin ) X  =  U. v ) )
9755, 96syld 46 . . . . . . 7  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) )
9897expr 619 . . . . . 6  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  u  C_  ( topGen `
 B ) )  ->  ( X  = 
U. u  ->  ( A. y  e.  ~P  B ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )  ->  E. v  e.  ( ~P u  i^i  Fin ) X  =  U. v
) ) )
9998com23 82 . . . . 5  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  u  C_  ( topGen `
 B ) )  ->  ( A. y  e.  ~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  ( X  =  U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
10020, 99sylan2 477 . . . 4  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  u  e.  ~P ( topGen `  B )
)  ->  ( A. y  e.  ~P  B
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z )  ->  ( X  =  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) X  =  U. v ) ) )
101100ralrimdva 2844 . . 3  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  A. u  e.  ~P  ( topGen `  B
) ( X  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
102 tgcl 19977 . . . . . 6  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )
103102adantr 467 . . . . 5  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( topGen `  B )  e.  Top )
1041iscmp 20395 . . . . . 6  |-  ( (
topGen `  B )  e. 
Comp 
<->  ( ( topGen `  B
)  e.  Top  /\  A. u  e.  ~P  ( topGen `
 B ) ( U. ( topGen `  B
)  =  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) U. ( topGen `  B
)  =  U. v
) ) )
105104baib 912 . . . . 5  |-  ( (
topGen `  B )  e. 
Top  ->  ( ( topGen `  B )  e.  Comp  <->  A. u  e.  ~P  ( topGen `
 B ) ( U. ( topGen `  B
)  =  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) U. ( topGen `  B
)  =  U. v
) ) )
106103, 105syl 17 . . . 4  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  <->  A. u  e.  ~P  ( topGen `  B
) ( U. ( topGen `
 B )  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) U. ( topGen `
 B )  = 
U. v ) ) )
1076eqeq1d 2425 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( U. ( topGen `  B )  =  U. u 
<->  X  =  U. u
) )
1086eqeq1d 2425 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( U. ( topGen `  B )  =  U. v 
<->  X  =  U. v
) )
109108rexbidv 2940 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( E. v  e.  ( ~P u  i^i 
Fin ) U. ( topGen `
 B )  = 
U. v  <->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) )
110107, 109imbi12d 322 . . . . 5  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( U. ( topGen `
 B )  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) U. ( topGen `
 B )  = 
U. v )  <->  ( X  =  U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
111110ralbidv 2865 . . . 4  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. u  e. 
~P  ( topGen `  B
) ( U. ( topGen `
 B )  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) U. ( topGen `
 B )  = 
U. v )  <->  A. u  e.  ~P  ( topGen `  B
) ( X  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
112106, 111bitrd 257 . . 3  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  <->  A. u  e.  ~P  ( topGen `  B
) ( X  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
113101, 112sylibrd 238 . 2  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  ( topGen `  B )  e.  Comp ) )
11419, 113impbid 194 1  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  <->  A. y  e.  ~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438   E.wex 1660    e. wcel 1869   A.wral 2776   E.wrex 2777   {crab 2780    i^i cin 3436    C_ wss 3437   ~Pcpw 3980   U.cuni 4217   U_ciun 4297   ran crn 4852    Fn wfn 5594   -->wf 5595   -onto->wfo 5597   ` cfv 5599   Fincfn 7575   topGenctg 15329   Topctop 19909   TopBasesctb 19912   Compccmp 20393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-om 6705  df-1o 7188  df-er 7369  df-en 7576  df-dom 7577  df-fin 7579  df-topgen 15335  df-top 19913  df-bases 19914  df-cmp 20394
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator