MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcmp Structured version   Visualization version   Unicode version

Theorem tgcmp 20416
Description: A topology generated by a basis is compact iff open covers drawn from the basis have finite subcovers. (See also alexsub 21060, which further specializes to subbases, assuming the ultrafilter lemma.) (Contributed by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
tgcmp  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  <->  A. y  e.  ~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
Distinct variable groups:    y, z, B    y, X, z

Proof of Theorem tgcmp
Dummy variables  t 
f  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2451 . . . . 5  |-  U. ( topGen `
 B )  = 
U. ( topGen `  B
)
21iscmp 20403 . . . 4  |-  ( (
topGen `  B )  e. 
Comp 
<->  ( ( topGen `  B
)  e.  Top  /\  A. y  e.  ~P  ( topGen `
 B ) ( U. ( topGen `  B
)  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. ( topGen `  B
)  =  U. z
) ) )
32simprbi 466 . . 3  |-  ( (
topGen `  B )  e. 
Comp  ->  A. y  e.  ~P  ( topGen `  B )
( U. ( topGen `  B )  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. ( topGen `  B
)  =  U. z
) )
4 unitg 19982 . . . . . . . 8  |-  ( B  e.  TopBases  ->  U. ( topGen `  B
)  =  U. B
)
5 eqtr3 2472 . . . . . . . 8  |-  ( ( U. ( topGen `  B
)  =  U. B  /\  X  =  U. B )  ->  U. ( topGen `
 B )  =  X )
64, 5sylan 474 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  ->  U. ( topGen `  B )  =  X )
76eqeq1d 2453 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( U. ( topGen `  B )  =  U. y 
<->  X  =  U. y
) )
86eqeq1d 2453 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( U. ( topGen `  B )  =  U. z 
<->  X  =  U. z
) )
98rexbidv 2901 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( E. z  e.  ( ~P y  i^i 
Fin ) U. ( topGen `
 B )  = 
U. z  <->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) )
107, 9imbi12d 322 . . . . 5  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( U. ( topGen `
 B )  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. ( topGen `
 B )  = 
U. z )  <->  ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
1110ralbidv 2827 . . . 4  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  ( topGen `  B
) ( U. ( topGen `
 B )  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. ( topGen `
 B )  = 
U. z )  <->  A. y  e.  ~P  ( topGen `  B
) ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
12 bastg 19981 . . . . . . 7  |-  ( B  e.  TopBases  ->  B  C_  ( topGen `
 B ) )
1312adantr 467 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  ->  B  C_  ( topGen `  B
) )
14 sspwb 4649 . . . . . 6  |-  ( B 
C_  ( topGen `  B
)  <->  ~P B  C_  ~P ( topGen `  B )
)
1513, 14sylib 200 . . . . 5  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  ->  ~P B  C_  ~P ( topGen `
 B ) )
16 ssralv 3493 . . . . 5  |-  ( ~P B  C_  ~P ( topGen `
 B )  -> 
( A. y  e. 
~P  ( topGen `  B
) ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )  ->  A. y  e.  ~P  B ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
1715, 16syl 17 . . . 4  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  ( topGen `  B
) ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )  ->  A. y  e.  ~P  B ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
1811, 17sylbid 219 . . 3  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  ( topGen `  B
) ( U. ( topGen `
 B )  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. ( topGen `
 B )  = 
U. z )  ->  A. y  e.  ~P  B ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z ) ) )
193, 18syl5 33 . 2  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  ->  A. y  e.  ~P  B
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z ) ) )
20 elpwi 3960 . . . . 5  |-  ( u  e.  ~P ( topGen `  B )  ->  u  C_  ( topGen `  B )
)
21 simprr 766 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  X  =  U. u
)
22 simprl 764 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  u  C_  ( topGen `  B
) )
2322sselda 3432 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  t  e.  u
)  ->  t  e.  ( topGen `  B )
)
2423adantrr 723 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( t  e.  u  /\  y  e.  t ) )  -> 
t  e.  ( topGen `  B ) )
25 simprr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( t  e.  u  /\  y  e.  t ) )  -> 
y  e.  t )
26 tg2 19980 . . . . . . . . . . . . . . . 16  |-  ( ( t  e.  ( topGen `  B )  /\  y  e.  t )  ->  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) )
2724, 25, 26syl2anc 667 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( t  e.  u  /\  y  e.  t ) )  ->  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) )
2827expr 620 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  t  e.  u
)  ->  ( y  e.  t  ->  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) ) )
2928reximdva 2862 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( E. t  e.  u  y  e.  t  ->  E. t  e.  u  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) ) )
30 eluni2 4202 . . . . . . . . . . . . 13  |-  ( y  e.  U. u  <->  E. t  e.  u  y  e.  t )
31 elunirab 4210 . . . . . . . . . . . . . 14  |-  ( y  e.  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  <->  E. w  e.  B  ( y  e.  w  /\  E. t  e.  u  w  C_  t
) )
32 r19.42v 2945 . . . . . . . . . . . . . . 15  |-  ( E. t  e.  u  ( y  e.  w  /\  w  C_  t )  <->  ( y  e.  w  /\  E. t  e.  u  w  C_  t
) )
3332rexbii 2889 . . . . . . . . . . . . . 14  |-  ( E. w  e.  B  E. t  e.  u  (
y  e.  w  /\  w  C_  t )  <->  E. w  e.  B  ( y  e.  w  /\  E. t  e.  u  w  C_  t
) )
34 rexcom 2952 . . . . . . . . . . . . . 14  |-  ( E. w  e.  B  E. t  e.  u  (
y  e.  w  /\  w  C_  t )  <->  E. t  e.  u  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) )
3531, 33, 343bitr2i 277 . . . . . . . . . . . . 13  |-  ( y  e.  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  <->  E. t  e.  u  E. w  e.  B  ( y  e.  w  /\  w  C_  t ) )
3629, 30, 353imtr4g 274 . . . . . . . . . . . 12  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( y  e.  U. u  ->  y  e.  U. { w  e.  B  |  E. t  e.  u  w  C_  t } ) )
3736ssrdv 3438 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  U. u  C_  U. {
w  e.  B  |  E. t  e.  u  w  C_  t } )
3821, 37eqsstrd 3466 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  X  C_  U. { w  e.  B  |  E. t  e.  u  w  C_  t } )
39 ssrab2 3514 . . . . . . . . . . . 12  |-  { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  B
4039unissi 4221 . . . . . . . . . . 11  |-  U. {
w  e.  B  |  E. t  e.  u  w  C_  t }  C_  U. B
41 simplr 762 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  X  =  U. B )
4240, 41syl5sseqr 3481 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  X )
4338, 42eqssd 3449 . . . . . . . . 9  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  X  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t } )
44 elpw2g 4566 . . . . . . . . . . . 12  |-  ( B  e.  TopBases  ->  ( { w  e.  B  |  E. t  e.  u  w  C_  t }  e.  ~P B 
<->  { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  B ) )
4544ad2antrr 732 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( { w  e.  B  |  E. t  e.  u  w  C_  t }  e.  ~P B  <->  { w  e.  B  |  E. t  e.  u  w  C_  t }  C_  B ) )
4639, 45mpbiri 237 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  ->  { w  e.  B  |  E. t  e.  u  w  C_  t }  e.  ~P B )
47 unieq 4206 . . . . . . . . . . . . 13  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  U. y  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t } )
4847eqeq2d 2461 . . . . . . . . . . . 12  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ( X  = 
U. y  <->  X  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t } ) )
49 pweq 3954 . . . . . . . . . . . . . 14  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ~P y  =  ~P { w  e.  B  |  E. t  e.  u  w  C_  t } )
5049ineq1d 3633 . . . . . . . . . . . . 13  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ( ~P y  i^i  Fin )  =  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) )
5150rexeqdv 2994 . . . . . . . . . . . 12  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ( E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z  <->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) )
5248, 51imbi12d 322 . . . . . . . . . . 11  |-  ( y  =  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  ( ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  <->  ( X  = 
U. { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) ) )
5352rspcv 3146 . . . . . . . . . 10  |-  ( { w  e.  B  |  E. t  e.  u  w  C_  t }  e.  ~P B  ->  ( A. y  e.  ~P  B
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z )  ->  ( X  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) ) )
5446, 53syl 17 . . . . . . . . 9  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  ( X  =  U. { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) ) )
5543, 54mpid 42 . . . . . . . 8  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z ) )
56 elfpw 7876 . . . . . . . . . . . . 13  |-  ( z  e.  ( ~P {
w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  <->  ( z  C_  { w  e.  B  |  E. t  e.  u  w  C_  t }  /\  z  e.  Fin )
)
5756simprbi 466 . . . . . . . . . . . 12  |-  ( z  e.  ( ~P {
w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  ->  z  e.  Fin )
5857ad2antrl 734 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  -> 
z  e.  Fin )
5956simplbi 462 . . . . . . . . . . . . 13  |-  ( z  e.  ( ~P {
w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  ->  z  C_  { w  e.  B  |  E. t  e.  u  w  C_  t } )
6059ad2antrl 734 . . . . . . . . . . . 12  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  -> 
z  C_  { w  e.  B  |  E. t  e.  u  w  C_  t } )
61 ssrab 3507 . . . . . . . . . . . . 13  |-  ( z 
C_  { w  e.  B  |  E. t  e.  u  w  C_  t } 
<->  ( z  C_  B  /\  A. w  e.  z  E. t  e.  u  w  C_  t ) )
6261simprbi 466 . . . . . . . . . . . 12  |-  ( z 
C_  { w  e.  B  |  E. t  e.  u  w  C_  t }  ->  A. w  e.  z  E. t  e.  u  w  C_  t )
6360, 62syl 17 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  ->  A. w  e.  z  E. t  e.  u  w  C_  t )
64 sseq2 3454 . . . . . . . . . . . 12  |-  ( t  =  ( f `  w )  ->  (
w  C_  t  <->  w  C_  (
f `  w )
) )
6564ac6sfi 7815 . . . . . . . . . . 11  |-  ( ( z  e.  Fin  /\  A. w  e.  z  E. t  e.  u  w  C_  t )  ->  E. f
( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )
6658, 63, 65syl2anc 667 . . . . . . . . . 10  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  ->  E. f ( f : z --> u  /\  A. w  e.  z  w  C_  ( f `  w
) ) )
67 frn 5735 . . . . . . . . . . . . 13  |-  ( f : z --> u  ->  ran  f  C_  u )
6867ad2antrl 734 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  ran  f  C_  u )
69 ffn 5728 . . . . . . . . . . . . . . 15  |-  ( f : z --> u  -> 
f  Fn  z )
70 dffn4 5799 . . . . . . . . . . . . . . 15  |-  ( f  Fn  z  <->  f :
z -onto-> ran  f )
7169, 70sylib 200 . . . . . . . . . . . . . 14  |-  ( f : z --> u  -> 
f : z -onto-> ran  f )
7271adantr 467 . . . . . . . . . . . . 13  |-  ( ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
)  ->  f :
z -onto-> ran  f )
73 fofi 7860 . . . . . . . . . . . . 13  |-  ( ( z  e.  Fin  /\  f : z -onto-> ran  f
)  ->  ran  f  e. 
Fin )
7458, 72, 73syl2an 480 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  ran  f  e.  Fin )
75 elfpw 7876 . . . . . . . . . . . 12  |-  ( ran  f  e.  ( ~P u  i^i  Fin )  <->  ( ran  f  C_  u  /\  ran  f  e.  Fin ) )
7668, 74, 75sylanbrc 670 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  ran  f  e.  ( ~P u  i^i  Fin ) )
77 simplrr 771 . . . . . . . . . . . . 13  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  X  =  U. z )
78 uniiun 4331 . . . . . . . . . . . . . . . 16  |-  U. z  =  U_ w  e.  z  w
79 ss2iun 4294 . . . . . . . . . . . . . . . 16  |-  ( A. w  e.  z  w  C_  ( f `  w
)  ->  U_ w  e.  z  w  C_  U_ w  e.  z  ( f `  w ) )
8078, 79syl5eqss 3476 . . . . . . . . . . . . . . 15  |-  ( A. w  e.  z  w  C_  ( f `  w
)  ->  U. z  C_ 
U_ w  e.  z  ( f `  w
) )
8180ad2antll 735 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U. z  C_ 
U_ w  e.  z  ( f `  w
) )
82 fniunfv 6152 . . . . . . . . . . . . . . . 16  |-  ( f  Fn  z  ->  U_ w  e.  z  ( f `  w )  =  U. ran  f )
8369, 82syl 17 . . . . . . . . . . . . . . 15  |-  ( f : z --> u  ->  U_ w  e.  z 
( f `  w
)  =  U. ran  f )
8483ad2antrl 734 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U_ w  e.  z  ( f `  w )  =  U. ran  f )
8581, 84sseqtrd 3468 . . . . . . . . . . . . 13  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U. z  C_ 
U. ran  f )
8677, 85eqsstrd 3466 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  X  C_ 
U. ran  f )
8768unissd 4222 . . . . . . . . . . . . 13  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U. ran  f  C_  U. u )
8821ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  X  =  U. u )
8987, 88sseqtr4d 3469 . . . . . . . . . . . 12  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  U. ran  f  C_  X )
9086, 89eqssd 3449 . . . . . . . . . . 11  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  X  =  U. ran  f )
91 unieq 4206 . . . . . . . . . . . . 13  |-  ( v  =  ran  f  ->  U. v  =  U. ran  f )
9291eqeq2d 2461 . . . . . . . . . . . 12  |-  ( v  =  ran  f  -> 
( X  =  U. v 
<->  X  =  U. ran  f ) )
9392rspcev 3150 . . . . . . . . . . 11  |-  ( ( ran  f  e.  ( ~P u  i^i  Fin )  /\  X  =  U. ran  f )  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v )
9476, 90, 93syl2anc 667 . . . . . . . . . 10  |-  ( ( ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  /\  ( f : z --> u  /\  A. w  e.  z  w  C_  (
f `  w )
) )  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v )
9566, 94exlimddv 1781 . . . . . . . . 9  |-  ( ( ( ( B  e.  TopBases 
/\  X  =  U. B )  /\  (
u  C_  ( topGen `  B )  /\  X  =  U. u ) )  /\  ( z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin )  /\  X  =  U. z ) )  ->  E. v  e.  ( ~P u  i^i  Fin ) X  =  U. v
)
9695rexlimdvaa 2880 . . . . . . . 8  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( E. z  e.  ( ~P { w  e.  B  |  E. t  e.  u  w  C_  t }  i^i  Fin ) X  =  U. z  ->  E. v  e.  ( ~P u  i^i  Fin ) X  =  U. v ) )
9755, 96syld 45 . . . . . . 7  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  ( u  C_  ( topGen `  B )  /\  X  =  U. u ) )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) )
9897expr 620 . . . . . 6  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  u  C_  ( topGen `
 B ) )  ->  ( X  = 
U. u  ->  ( A. y  e.  ~P  B ( X  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) X  = 
U. z )  ->  E. v  e.  ( ~P u  i^i  Fin ) X  =  U. v
) ) )
9998com23 81 . . . . 5  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  u  C_  ( topGen `
 B ) )  ->  ( A. y  e.  ~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  ( X  =  U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
10020, 99sylan2 477 . . . 4  |-  ( ( ( B  e.  TopBases  /\  X  =  U. B )  /\  u  e.  ~P ( topGen `  B )
)  ->  ( A. y  e.  ~P  B
( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z )  ->  ( X  =  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) X  =  U. v ) ) )
101100ralrimdva 2806 . . 3  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  A. u  e.  ~P  ( topGen `  B
) ( X  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
102 tgcl 19985 . . . . . 6  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )
103102adantr 467 . . . . 5  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( topGen `  B )  e.  Top )
1041iscmp 20403 . . . . . 6  |-  ( (
topGen `  B )  e. 
Comp 
<->  ( ( topGen `  B
)  e.  Top  /\  A. u  e.  ~P  ( topGen `
 B ) ( U. ( topGen `  B
)  =  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) U. ( topGen `  B
)  =  U. v
) ) )
105104baib 914 . . . . 5  |-  ( (
topGen `  B )  e. 
Top  ->  ( ( topGen `  B )  e.  Comp  <->  A. u  e.  ~P  ( topGen `
 B ) ( U. ( topGen `  B
)  =  U. u  ->  E. v  e.  ( ~P u  i^i  Fin ) U. ( topGen `  B
)  =  U. v
) ) )
106103, 105syl 17 . . . 4  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  <->  A. u  e.  ~P  ( topGen `  B
) ( U. ( topGen `
 B )  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) U. ( topGen `
 B )  = 
U. v ) ) )
1076eqeq1d 2453 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( U. ( topGen `  B )  =  U. u 
<->  X  =  U. u
) )
1086eqeq1d 2453 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( U. ( topGen `  B )  =  U. v 
<->  X  =  U. v
) )
109108rexbidv 2901 . . . . . 6  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( E. v  e.  ( ~P u  i^i 
Fin ) U. ( topGen `
 B )  = 
U. v  <->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) )
110107, 109imbi12d 322 . . . . 5  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( U. ( topGen `
 B )  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) U. ( topGen `
 B )  = 
U. v )  <->  ( X  =  U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
111110ralbidv 2827 . . . 4  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. u  e. 
~P  ( topGen `  B
) ( U. ( topGen `
 B )  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) U. ( topGen `
 B )  = 
U. v )  <->  A. u  e.  ~P  ( topGen `  B
) ( X  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
112106, 111bitrd 257 . . 3  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  <->  A. u  e.  ~P  ( topGen `  B
) ( X  = 
U. u  ->  E. v  e.  ( ~P u  i^i 
Fin ) X  = 
U. v ) ) )
113101, 112sylibrd 238 . 2  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( A. y  e. 
~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
)  ->  ( topGen `  B )  e.  Comp ) )
11419, 113impbid 194 1  |-  ( ( B  e.  TopBases  /\  X  =  U. B )  -> 
( ( topGen `  B
)  e.  Comp  <->  A. y  e.  ~P  B ( X  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) X  =  U. z
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444   E.wex 1663    e. wcel 1887   A.wral 2737   E.wrex 2738   {crab 2741    i^i cin 3403    C_ wss 3404   ~Pcpw 3951   U.cuni 4198   U_ciun 4278   ran crn 4835    Fn wfn 5577   -->wf 5578   -onto->wfo 5580   ` cfv 5582   Fincfn 7569   topGenctg 15336   Topctop 19917   TopBasesctb 19920   Compccmp 20401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-om 6693  df-1o 7182  df-er 7363  df-en 7570  df-dom 7571  df-fin 7573  df-topgen 15342  df-top 19921  df-bases 19922  df-cmp 20402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator