MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgclb Unicode version

Theorem tgclb 16990
Description: The property tgcl 16989 can be reversed: if the topology generated by  B is actually a topology, then 
B must be a topological basis. This yields an alternative definition of  TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgclb  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )

Proof of Theorem tgclb
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgcl 16989 . 2  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )
2 0opn 16932 . . . . . . . . . 10  |-  ( (
topGen `  B )  e. 
Top  ->  (/)  e.  ( topGen `  B ) )
32elfvexd 5718 . . . . . . . . 9  |-  ( (
topGen `  B )  e. 
Top  ->  B  e.  _V )
4 bastg 16986 . . . . . . . . 9  |-  ( B  e.  _V  ->  B  C_  ( topGen `  B )
)
53, 4syl 16 . . . . . . . 8  |-  ( (
topGen `  B )  e. 
Top  ->  B  C_  ( topGen `
 B ) )
65sselda 3308 . . . . . . 7  |-  ( ( ( topGen `  B )  e.  Top  /\  x  e.  B )  ->  x  e.  ( topGen `  B )
)
75sselda 3308 . . . . . . 7  |-  ( ( ( topGen `  B )  e.  Top  /\  y  e.  B )  ->  y  e.  ( topGen `  B )
)
86, 7anim12dan 811 . . . . . 6  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  e.  (
topGen `  B )  /\  y  e.  ( topGen `  B ) ) )
9 inopn 16927 . . . . . . 7  |-  ( ( ( topGen `  B )  e.  Top  /\  x  e.  ( topGen `  B )  /\  y  e.  ( topGen `
 B ) )  ->  ( x  i^i  y )  e.  (
topGen `  B ) )
1093expb 1154 . . . . . 6  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  ( topGen `  B
)  /\  y  e.  ( topGen `  B )
) )  ->  (
x  i^i  y )  e.  ( topGen `  B )
)
118, 10syldan 457 . . . . 5  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  i^i  y
)  e.  ( topGen `  B ) )
12 tg2 16985 . . . . . 6  |-  ( ( ( x  i^i  y
)  e.  ( topGen `  B )  /\  z  e.  ( x  i^i  y
) )  ->  E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
1312ralrimiva 2749 . . . . 5  |-  ( ( x  i^i  y )  e.  ( topGen `  B
)  ->  A. z  e.  ( x  i^i  y
) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) )
1411, 13syl 16 . . . 4  |-  ( ( ( topGen `  B )  e.  Top  /\  ( x  e.  B  /\  y  e.  B ) )  ->  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) )
1514ralrimivva 2758 . . 3  |-  ( (
topGen `  B )  e. 
Top  ->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) )
16 isbasis2g 16968 . . . 4  |-  ( B  e.  _V  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  (
x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
173, 16syl 16 . . 3  |-  ( (
topGen `  B )  e. 
Top  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  ( x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y
) ) ) )
1815, 17mpbird 224 . 2  |-  ( (
topGen `  B )  e. 
Top  ->  B  e.  TopBases )
191, 18impbii 181 1  |-  ( B  e.  TopBases 
<->  ( topGen `  B )  e.  Top )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    e. wcel 1721   A.wral 2666   E.wrex 2667   _Vcvv 2916    i^i cin 3279    C_ wss 3280   (/)c0 3588   ` cfv 5413   topGenctg 13620   Topctop 16913   TopBasesctb 16917
This theorem is referenced by:  bastop2  17014  iocpnfordt  17233  icomnfordt  17234  iooordt  17235  tgcn  17270  tgcnp  17271  2ndcctbss  17471  2ndcomap  17474  dis2ndc  17476  flftg  17981  met2ndci  18505  xrtgioo  18790  topfneec  26261
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-topgen 13622  df-top 16918  df-bases 16920
  Copyright terms: Public domain W3C validator