MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcl Unicode version

Theorem tgcl 16989
Description: Show that a basis generates a topology. Remark in [Munkres] p. 79. (Contributed by NM, 17-Jul-2006.)
Assertion
Ref Expression
tgcl  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )

Proof of Theorem tgcl
Dummy variables  x  y  z  u  t 
v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 3996 . . . . . . . 8  |-  ( u 
C_  ( topGen `  B
)  ->  U. u  C_ 
U. ( topGen `  B
) )
21adantl 453 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B )
)  ->  U. u  C_ 
U. ( topGen `  B
) )
3 unitg 16987 . . . . . . . 8  |-  ( B  e.  TopBases  ->  U. ( topGen `  B
)  =  U. B
)
43adantr 452 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B )
)  ->  U. ( topGen `
 B )  = 
U. B )
52, 4sseqtrd 3344 . . . . . 6  |-  ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B )
)  ->  U. u  C_ 
U. B )
6 eluni2 3979 . . . . . . . 8  |-  ( x  e.  U. u  <->  E. t  e.  u  x  e.  t )
7 ssel2 3303 . . . . . . . . . . . 12  |-  ( ( u  C_  ( topGen `  B )  /\  t  e.  u )  ->  t  e.  ( topGen `  B )
)
8 eltg2b 16979 . . . . . . . . . . . . . . 15  |-  ( B  e.  TopBases  ->  ( t  e.  ( topGen `  B )  <->  A. x  e.  t  E. y  e.  B  (
x  e.  y  /\  y  C_  t ) ) )
9 rsp 2726 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  t  E. y  e.  B  (
x  e.  y  /\  y  C_  t )  -> 
( x  e.  t  ->  E. y  e.  B  ( x  e.  y  /\  y  C_  t ) ) )
108, 9syl6bi 220 . . . . . . . . . . . . . 14  |-  ( B  e.  TopBases  ->  ( t  e.  ( topGen `  B )  ->  ( x  e.  t  ->  E. y  e.  B  ( x  e.  y  /\  y  C_  t ) ) ) )
1110imp31 422 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  TopBases  /\  t  e.  ( topGen `  B ) )  /\  x  e.  t )  ->  E. y  e.  B  ( x  e.  y  /\  y  C_  t ) )
1211an32s 780 . . . . . . . . . . . 12  |-  ( ( ( B  e.  TopBases  /\  x  e.  t )  /\  t  e.  ( topGen `
 B ) )  ->  E. y  e.  B  ( x  e.  y  /\  y  C_  t ) )
137, 12sylan2 461 . . . . . . . . . . 11  |-  ( ( ( B  e.  TopBases  /\  x  e.  t )  /\  ( u  C_  ( topGen `
 B )  /\  t  e.  u )
)  ->  E. y  e.  B  ( x  e.  y  /\  y  C_  t ) )
1413an42s 801 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B
) )  /\  (
t  e.  u  /\  x  e.  t )
)  ->  E. y  e.  B  ( x  e.  y  /\  y  C_  t ) )
15 elssuni 4003 . . . . . . . . . . . . . 14  |-  ( t  e.  u  ->  t  C_ 
U. u )
16 sstr2 3315 . . . . . . . . . . . . . 14  |-  ( y 
C_  t  ->  (
t  C_  U. u  ->  y  C_  U. u
) )
1715, 16syl5com 28 . . . . . . . . . . . . 13  |-  ( t  e.  u  ->  (
y  C_  t  ->  y 
C_  U. u ) )
1817anim2d 549 . . . . . . . . . . . 12  |-  ( t  e.  u  ->  (
( x  e.  y  /\  y  C_  t
)  ->  ( x  e.  y  /\  y  C_ 
U. u ) ) )
1918reximdv 2777 . . . . . . . . . . 11  |-  ( t  e.  u  ->  ( E. y  e.  B  ( x  e.  y  /\  y  C_  t )  ->  E. y  e.  B  ( x  e.  y  /\  y  C_  U. u
) ) )
2019ad2antrl 709 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B
) )  /\  (
t  e.  u  /\  x  e.  t )
)  ->  ( E. y  e.  B  (
x  e.  y  /\  y  C_  t )  ->  E. y  e.  B  ( x  e.  y  /\  y  C_  U. u
) ) )
2114, 20mpd 15 . . . . . . . . 9  |-  ( ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B
) )  /\  (
t  e.  u  /\  x  e.  t )
)  ->  E. y  e.  B  ( x  e.  y  /\  y  C_ 
U. u ) )
2221rexlimdvaa 2791 . . . . . . . 8  |-  ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B )
)  ->  ( E. t  e.  u  x  e.  t  ->  E. y  e.  B  ( x  e.  y  /\  y  C_ 
U. u ) ) )
236, 22syl5bi 209 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B )
)  ->  ( x  e.  U. u  ->  E. y  e.  B  ( x  e.  y  /\  y  C_ 
U. u ) ) )
2423ralrimiv 2748 . . . . . 6  |-  ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B )
)  ->  A. x  e.  U. u E. y  e.  B  ( x  e.  y  /\  y  C_ 
U. u ) )
255, 24jca 519 . . . . 5  |-  ( ( B  e.  TopBases  /\  u  C_  ( topGen `  B )
)  ->  ( U. u  C_  U. B  /\  A. x  e.  U. u E. y  e.  B  ( x  e.  y  /\  y  C_  U. u
) ) )
2625ex 424 . . . 4  |-  ( B  e.  TopBases  ->  ( u  C_  ( topGen `  B )  ->  ( U. u  C_  U. B  /\  A. x  e.  U. u E. y  e.  B  ( x  e.  y  /\  y  C_ 
U. u ) ) ) )
27 eltg2 16978 . . . 4  |-  ( B  e.  TopBases  ->  ( U. u  e.  ( topGen `  B )  <->  ( U. u  C_  U. B  /\  A. x  e.  U. u E. y  e.  B  ( x  e.  y  /\  y  C_  U. u
) ) ) )
2826, 27sylibrd 226 . . 3  |-  ( B  e.  TopBases  ->  ( u  C_  ( topGen `  B )  ->  U. u  e.  (
topGen `  B ) ) )
2928alrimiv 1638 . 2  |-  ( B  e.  TopBases  ->  A. u ( u 
C_  ( topGen `  B
)  ->  U. u  e.  ( topGen `  B )
) )
30 inss1 3521 . . . . . . . 8  |-  ( u  i^i  v )  C_  u
31 tg1 16984 . . . . . . . 8  |-  ( u  e.  ( topGen `  B
)  ->  u  C_  U. B
)
3230, 31syl5ss 3319 . . . . . . 7  |-  ( u  e.  ( topGen `  B
)  ->  ( u  i^i  v )  C_  U. B
)
3332ad2antrl 709 . . . . . 6  |-  ( ( B  e.  TopBases  /\  (
u  e.  ( topGen `  B )  /\  v  e.  ( topGen `  B )
) )  ->  (
u  i^i  v )  C_ 
U. B )
34 eltg2 16978 . . . . . . . . . . . . 13  |-  ( B  e.  TopBases  ->  ( u  e.  ( topGen `  B )  <->  ( u  C_  U. B  /\  A. x  e.  u  E. z  e.  B  (
x  e.  z  /\  z  C_  u ) ) ) )
3534simplbda 608 . . . . . . . . . . . 12  |-  ( ( B  e.  TopBases  /\  u  e.  ( topGen `  B )
)  ->  A. x  e.  u  E. z  e.  B  ( x  e.  z  /\  z  C_  u ) )
36 rsp 2726 . . . . . . . . . . . 12  |-  ( A. x  e.  u  E. z  e.  B  (
x  e.  z  /\  z  C_  u )  -> 
( x  e.  u  ->  E. z  e.  B  ( x  e.  z  /\  z  C_  u ) ) )
3735, 36syl 16 . . . . . . . . . . 11  |-  ( ( B  e.  TopBases  /\  u  e.  ( topGen `  B )
)  ->  ( x  e.  u  ->  E. z  e.  B  ( x  e.  z  /\  z  C_  u ) ) )
38 eltg2 16978 . . . . . . . . . . . . 13  |-  ( B  e.  TopBases  ->  ( v  e.  ( topGen `  B )  <->  ( v  C_  U. B  /\  A. x  e.  v  E. w  e.  B  (
x  e.  w  /\  w  C_  v ) ) ) )
3938simplbda 608 . . . . . . . . . . . 12  |-  ( ( B  e.  TopBases  /\  v  e.  ( topGen `  B )
)  ->  A. x  e.  v  E. w  e.  B  ( x  e.  w  /\  w  C_  v ) )
40 rsp 2726 . . . . . . . . . . . 12  |-  ( A. x  e.  v  E. w  e.  B  (
x  e.  w  /\  w  C_  v )  -> 
( x  e.  v  ->  E. w  e.  B  ( x  e.  w  /\  w  C_  v ) ) )
4139, 40syl 16 . . . . . . . . . . 11  |-  ( ( B  e.  TopBases  /\  v  e.  ( topGen `  B )
)  ->  ( x  e.  v  ->  E. w  e.  B  ( x  e.  w  /\  w  C_  v ) ) )
4237, 41im2anan9 809 . . . . . . . . . 10  |-  ( ( ( B  e.  TopBases  /\  u  e.  ( topGen `  B ) )  /\  ( B  e.  TopBases  /\  v  e.  ( topGen `  B )
) )  ->  (
( x  e.  u  /\  x  e.  v
)  ->  ( E. z  e.  B  (
x  e.  z  /\  z  C_  u )  /\  E. w  e.  B  ( x  e.  w  /\  w  C_  v ) ) ) )
43 elin 3490 . . . . . . . . . 10  |-  ( x  e.  ( u  i^i  v )  <->  ( x  e.  u  /\  x  e.  v ) )
44 reeanv 2835 . . . . . . . . . 10  |-  ( E. z  e.  B  E. w  e.  B  (
( x  e.  z  /\  z  C_  u
)  /\  ( x  e.  w  /\  w  C_  v ) )  <->  ( E. z  e.  B  (
x  e.  z  /\  z  C_  u )  /\  E. w  e.  B  ( x  e.  w  /\  w  C_  v ) ) )
4542, 43, 443imtr4g 262 . . . . . . . . 9  |-  ( ( ( B  e.  TopBases  /\  u  e.  ( topGen `  B ) )  /\  ( B  e.  TopBases  /\  v  e.  ( topGen `  B )
) )  ->  (
x  e.  ( u  i^i  v )  ->  E. z  e.  B  E. w  e.  B  ( ( x  e.  z  /\  z  C_  u )  /\  (
x  e.  w  /\  w  C_  v ) ) ) )
4645anandis 804 . . . . . . . 8  |-  ( ( B  e.  TopBases  /\  (
u  e.  ( topGen `  B )  /\  v  e.  ( topGen `  B )
) )  ->  (
x  e.  ( u  i^i  v )  ->  E. z  e.  B  E. w  e.  B  ( ( x  e.  z  /\  z  C_  u )  /\  (
x  e.  w  /\  w  C_  v ) ) ) )
47 elin 3490 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  ( z  i^i  w )  <->  ( x  e.  z  /\  x  e.  w ) )
4847biimpri 198 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  z  /\  x  e.  w )  ->  x  e.  ( z  i^i  w ) )
49 ss2in 3528 . . . . . . . . . . . . . . . 16  |-  ( ( z  C_  u  /\  w  C_  v )  -> 
( z  i^i  w
)  C_  ( u  i^i  v ) )
5048, 49anim12i 550 . . . . . . . . . . . . . . 15  |-  ( ( ( x  e.  z  /\  x  e.  w
)  /\  ( z  C_  u  /\  w  C_  v ) )  -> 
( x  e.  ( z  i^i  w )  /\  ( z  i^i  w )  C_  (
u  i^i  v )
) )
5150an4s 800 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  z  /\  z  C_  u
)  /\  ( x  e.  w  /\  w  C_  v ) )  -> 
( x  e.  ( z  i^i  w )  /\  ( z  i^i  w )  C_  (
u  i^i  v )
) )
52 basis2 16971 . . . . . . . . . . . . . . . . 17  |-  ( ( ( B  e.  TopBases  /\  z  e.  B )  /\  ( w  e.  B  /\  x  e.  (
z  i^i  w )
) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( z  i^i  w
) ) )
5352adantllr 700 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( B  e.  TopBases 
/\  x  e.  ( u  i^i  v ) )  /\  z  e.  B )  /\  (
w  e.  B  /\  x  e.  ( z  i^i  w ) ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( z  i^i  w ) ) )
5453adantrrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  TopBases 
/\  x  e.  ( u  i^i  v ) )  /\  z  e.  B )  /\  (
w  e.  B  /\  ( x  e.  (
z  i^i  w )  /\  ( z  i^i  w
)  C_  ( u  i^i  v ) ) ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( z  i^i  w
) ) )
55 sstr2 3315 . . . . . . . . . . . . . . . . . . . 20  |-  ( t 
C_  ( z  i^i  w )  ->  (
( z  i^i  w
)  C_  ( u  i^i  v )  ->  t  C_  ( u  i^i  v
) ) )
5655com12 29 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  i^i  w ) 
C_  ( u  i^i  v )  ->  (
t  C_  ( z  i^i  w )  ->  t  C_  ( u  i^i  v
) ) )
5756anim2d 549 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  i^i  w ) 
C_  ( u  i^i  v )  ->  (
( x  e.  t  /\  t  C_  (
z  i^i  w )
)  ->  ( x  e.  t  /\  t  C_  ( u  i^i  v
) ) ) )
5857reximdv 2777 . . . . . . . . . . . . . . . . 17  |-  ( ( z  i^i  w ) 
C_  ( u  i^i  v )  ->  ( E. t  e.  B  ( x  e.  t  /\  t  C_  ( z  i^i  w ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) )
5958adantl 453 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( z  i^i  w )  /\  ( z  i^i  w
)  C_  ( u  i^i  v ) )  -> 
( E. t  e.  B  ( x  e.  t  /\  t  C_  ( z  i^i  w
) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v
) ) ) )
6059ad2antll 710 . . . . . . . . . . . . . . 15  |-  ( ( ( ( B  e.  TopBases 
/\  x  e.  ( u  i^i  v ) )  /\  z  e.  B )  /\  (
w  e.  B  /\  ( x  e.  (
z  i^i  w )  /\  ( z  i^i  w
)  C_  ( u  i^i  v ) ) ) )  ->  ( E. t  e.  B  (
x  e.  t  /\  t  C_  ( z  i^i  w ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) )
6154, 60mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( B  e.  TopBases 
/\  x  e.  ( u  i^i  v ) )  /\  z  e.  B )  /\  (
w  e.  B  /\  ( x  e.  (
z  i^i  w )  /\  ( z  i^i  w
)  C_  ( u  i^i  v ) ) ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v
) ) )
6251, 61sylanr2 635 . . . . . . . . . . . . 13  |-  ( ( ( ( B  e.  TopBases 
/\  x  e.  ( u  i^i  v ) )  /\  z  e.  B )  /\  (
w  e.  B  /\  ( ( x  e.  z  /\  z  C_  u )  /\  (
x  e.  w  /\  w  C_  v ) ) ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v
) ) )
6362rexlimdvaa 2791 . . . . . . . . . . . 12  |-  ( ( ( B  e.  TopBases  /\  x  e.  ( u  i^i  v ) )  /\  z  e.  B )  ->  ( E. w  e.  B  ( ( x  e.  z  /\  z  C_  u )  /\  (
x  e.  w  /\  w  C_  v ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) )
6463rexlimdva 2790 . . . . . . . . . . 11  |-  ( ( B  e.  TopBases  /\  x  e.  ( u  i^i  v
) )  ->  ( E. z  e.  B  E. w  e.  B  ( ( x  e.  z  /\  z  C_  u )  /\  (
x  e.  w  /\  w  C_  v ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) )
6564ex 424 . . . . . . . . . 10  |-  ( B  e.  TopBases  ->  ( x  e.  ( u  i^i  v
)  ->  ( E. z  e.  B  E. w  e.  B  (
( x  e.  z  /\  z  C_  u
)  /\  ( x  e.  w  /\  w  C_  v ) )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) ) )
6665a2d 24 . . . . . . . . 9  |-  ( B  e.  TopBases  ->  ( ( x  e.  ( u  i^i  v )  ->  E. z  e.  B  E. w  e.  B  ( (
x  e.  z  /\  z  C_  u )  /\  ( x  e.  w  /\  w  C_  v ) ) )  ->  (
x  e.  ( u  i^i  v )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) ) )
6766imp 419 . . . . . . . 8  |-  ( ( B  e.  TopBases  /\  (
x  e.  ( u  i^i  v )  ->  E. z  e.  B  E. w  e.  B  ( ( x  e.  z  /\  z  C_  u )  /\  (
x  e.  w  /\  w  C_  v ) ) ) )  ->  (
x  e.  ( u  i^i  v )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) )
6846, 67syldan 457 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  (
u  e.  ( topGen `  B )  /\  v  e.  ( topGen `  B )
) )  ->  (
x  e.  ( u  i^i  v )  ->  E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) )
6968ralrimiv 2748 . . . . . 6  |-  ( ( B  e.  TopBases  /\  (
u  e.  ( topGen `  B )  /\  v  e.  ( topGen `  B )
) )  ->  A. x  e.  ( u  i^i  v
) E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v
) ) )
7033, 69jca 519 . . . . 5  |-  ( ( B  e.  TopBases  /\  (
u  e.  ( topGen `  B )  /\  v  e.  ( topGen `  B )
) )  ->  (
( u  i^i  v
)  C_  U. B  /\  A. x  e.  ( u  i^i  v ) E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) )
7170ex 424 . . . 4  |-  ( B  e.  TopBases  ->  ( ( u  e.  ( topGen `  B
)  /\  v  e.  ( topGen `  B )
)  ->  ( (
u  i^i  v )  C_ 
U. B  /\  A. x  e.  ( u  i^i  v ) E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v
) ) ) ) )
72 eltg2 16978 . . . 4  |-  ( B  e.  TopBases  ->  ( ( u  i^i  v )  e.  ( topGen `  B )  <->  ( ( u  i^i  v
)  C_  U. B  /\  A. x  e.  ( u  i^i  v ) E. t  e.  B  ( x  e.  t  /\  t  C_  ( u  i^i  v ) ) ) ) )
7371, 72sylibrd 226 . . 3  |-  ( B  e.  TopBases  ->  ( ( u  e.  ( topGen `  B
)  /\  v  e.  ( topGen `  B )
)  ->  ( u  i^i  v )  e.  (
topGen `  B ) ) )
7473ralrimivv 2757 . 2  |-  ( B  e.  TopBases  ->  A. u  e.  (
topGen `  B ) A. v  e.  ( topGen `  B ) ( u  i^i  v )  e.  ( topGen `  B )
)
75 fvex 5701 . . 3  |-  ( topGen `  B )  e.  _V
76 istopg 16923 . . 3  |-  ( (
topGen `  B )  e. 
_V  ->  ( ( topGen `  B )  e.  Top  <->  ( A. u ( u  C_  ( topGen `  B )  ->  U. u  e.  (
topGen `  B ) )  /\  A. u  e.  ( topGen `  B ) A. v  e.  ( topGen `
 B ) ( u  i^i  v )  e.  ( topGen `  B
) ) ) )
7775, 76ax-mp 8 . 2  |-  ( (
topGen `  B )  e. 
Top 
<->  ( A. u ( u  C_  ( topGen `  B )  ->  U. u  e.  ( topGen `  B )
)  /\  A. u  e.  ( topGen `  B ) A. v  e.  ( topGen `
 B ) ( u  i^i  v )  e.  ( topGen `  B
) ) )
7829, 74, 77sylanbrc 646 1  |-  ( B  e.  TopBases  ->  ( topGen `  B
)  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1546    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   _Vcvv 2916    i^i cin 3279    C_ wss 3280   U.cuni 3975   ` cfv 5413   topGenctg 13620   Topctop 16913   TopBasesctb 16917
This theorem is referenced by:  tgclb  16990  tgtopon  16991  bastop  17001  elcls3  17102  resttop  17178  leordtval2  17230  tgcmp  17418  2ndctop  17463  2ndcsb  17465  2ndcsep  17475  txtop  17554  pttop  17567  xkotop  17573  alexsubALT  18035  retop  18748  onsuctop  26087  kelac2lem  27030
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-topgen 13622  df-top 16918  df-bases 16920
  Copyright terms: Public domain W3C validator