MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgbtwnne Structured version   Unicode version

Theorem tgbtwnne 23637
Description: Betweenness and inequality (Contributed by Thierry Arnoux, 1-Dec-2019.)
Hypotheses
Ref Expression
tkgeom.p  |-  P  =  ( Base `  G
)
tkgeom.d  |-  .-  =  ( dist `  G )
tkgeom.i  |-  I  =  (Itv `  G )
tkgeom.g  |-  ( ph  ->  G  e. TarskiG )
tgbtwntriv2.1  |-  ( ph  ->  A  e.  P )
tgbtwntriv2.2  |-  ( ph  ->  B  e.  P )
tgbtwncomb.3  |-  ( ph  ->  C  e.  P )
tgbtwnne.1  |-  ( ph  ->  B  e.  ( A I C ) )
tgbtwnne.2  |-  ( ph  ->  B  =/=  A )
Assertion
Ref Expression
tgbtwnne  |-  ( ph  ->  A  =/=  C )

Proof of Theorem tgbtwnne
StepHypRef Expression
1 tkgeom.p . . . . 5  |-  P  =  ( Base `  G
)
2 tkgeom.d . . . . 5  |-  .-  =  ( dist `  G )
3 tkgeom.i . . . . 5  |-  I  =  (Itv `  G )
4 tkgeom.g . . . . . 6  |-  ( ph  ->  G  e. TarskiG )
54adantr 465 . . . . 5  |-  ( (
ph  /\  A  =  C )  ->  G  e. TarskiG )
6 tgbtwntriv2.1 . . . . . 6  |-  ( ph  ->  A  e.  P )
76adantr 465 . . . . 5  |-  ( (
ph  /\  A  =  C )  ->  A  e.  P )
8 tgbtwntriv2.2 . . . . . 6  |-  ( ph  ->  B  e.  P )
98adantr 465 . . . . 5  |-  ( (
ph  /\  A  =  C )  ->  B  e.  P )
10 tgbtwnne.1 . . . . . . 7  |-  ( ph  ->  B  e.  ( A I C ) )
1110adantr 465 . . . . . 6  |-  ( (
ph  /\  A  =  C )  ->  B  e.  ( A I C ) )
12 simpr 461 . . . . . . 7  |-  ( (
ph  /\  A  =  C )  ->  A  =  C )
1312oveq2d 6300 . . . . . 6  |-  ( (
ph  /\  A  =  C )  ->  ( A I A )  =  ( A I C ) )
1411, 13eleqtrrd 2558 . . . . 5  |-  ( (
ph  /\  A  =  C )  ->  B  e.  ( A I A ) )
151, 2, 3, 5, 7, 9, 14axtgbtwnid 23619 . . . 4  |-  ( (
ph  /\  A  =  C )  ->  A  =  B )
1615eqcomd 2475 . . 3  |-  ( (
ph  /\  A  =  C )  ->  B  =  A )
17 tgbtwnne.2 . . . . 5  |-  ( ph  ->  B  =/=  A )
1817adantr 465 . . . 4  |-  ( (
ph  /\  A  =  C )  ->  B  =/=  A )
1918neneqd 2669 . . 3  |-  ( (
ph  /\  A  =  C )  ->  -.  B  =  A )
2016, 19pm2.65da 576 . 2  |-  ( ph  ->  -.  A  =  C )
2120neqned 2670 1  |-  ( ph  ->  A  =/=  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   ` cfv 5588  (class class class)co 6284   Basecbs 14490   distcds 14564  TarskiGcstrkg 23581  Itvcitv 23588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-nul 4576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-iota 5551  df-fv 5596  df-ov 6287  df-trkgb 23601  df-trkg 23606
This theorem is referenced by:  mideulem  23841  lmieu  23855
  Copyright terms: Public domain W3C validator