MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tg2 Structured version   Unicode version

Theorem tg2 19230
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.)
Assertion
Ref Expression
tg2  |-  ( ( A  e.  ( topGen `  B )  /\  C  e.  A )  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) )
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem tg2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elfvdm 5890 . . 3  |-  ( A  e.  ( topGen `  B
)  ->  B  e.  dom  topGen )
2 eltg2b 19224 . . . 4  |-  ( B  e.  dom  topGen  ->  ( A  e.  ( topGen `  B )  <->  A. y  e.  A  E. x  e.  B  ( y  e.  x  /\  x  C_  A ) ) )
3 eleq1 2539 . . . . . . 7  |-  ( y  =  C  ->  (
y  e.  x  <->  C  e.  x ) )
43anbi1d 704 . . . . . 6  |-  ( y  =  C  ->  (
( y  e.  x  /\  x  C_  A )  <-> 
( C  e.  x  /\  x  C_  A ) ) )
54rexbidv 2973 . . . . 5  |-  ( y  =  C  ->  ( E. x  e.  B  ( y  e.  x  /\  x  C_  A )  <->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) ) )
65rspccv 3211 . . . 4  |-  ( A. y  e.  A  E. x  e.  B  (
y  e.  x  /\  x  C_  A )  -> 
( C  e.  A  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) ) )
72, 6syl6bi 228 . . 3  |-  ( B  e.  dom  topGen  ->  ( A  e.  ( topGen `  B )  ->  ( C  e.  A  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) ) ) )
81, 7mpcom 36 . 2  |-  ( A  e.  ( topGen `  B
)  ->  ( C  e.  A  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) ) )
98imp 429 1  |-  ( ( A  e.  ( topGen `  B )  /\  C  e.  A )  ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   dom cdm 4999   ` cfv 5586   topGenctg 14686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-iota 5549  df-fun 5588  df-fv 5594  df-topgen 14692
This theorem is referenced by:  tgclb  19235  elcls3  19347  pnfnei  19484  mnfnei  19485  tgcnp  19517  tgcmp  19664  2ndcctbss  19719  2ndcdisj  19720  2ndcomap  19722  dis2ndc  19724  ptpjopn  19845  txlm  19881  flftg  20229  alexsublem  20276  alexsubALT  20283  tmdgsum2  20327  xrge0tsms  21071  xrge0tsmsd  27435  iccllyscon  28332  rellyscon  28333  fnessex  29745  islptre  31161
  Copyright terms: Public domain W3C validator