MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tg1 Structured version   Unicode version

Theorem tg1 18694
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.)
Assertion
Ref Expression
tg1  |-  ( A  e.  ( topGen `  B
)  ->  A  C_  U. B
)

Proof of Theorem tg1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 5818 . 2  |-  ( A  e.  ( topGen `  B
)  ->  B  e.  dom  topGen )
2 eltg2 18688 . . 3  |-  ( B  e.  dom  topGen  ->  ( A  e.  ( topGen `  B )  <->  ( A  C_ 
U. B  /\  A. x  e.  A  E. y  e.  B  (
x  e.  y  /\  y  C_  A ) ) ) )
32simprbda 623 . 2  |-  ( ( B  e.  dom  topGen  /\  A  e.  ( topGen `  B )
)  ->  A  C_  U. B
)
41, 3mpancom 669 1  |-  ( A  e.  ( topGen `  B
)  ->  A  C_  U. B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1758   A.wral 2795   E.wrex 2796    C_ wss 3429   U.cuni 4192   dom cdm 4941   ` cfv 5519   topGenctg 14487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-sbc 3288  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-iota 5482  df-fun 5521  df-fv 5527  df-topgen 14493
This theorem is referenced by:  tgcl  18699  ontgval  28414
  Copyright terms: Public domain W3C validator