MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem5 Structured version   Unicode version

Theorem tfrlem5 7004
Description: Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem5  |-  ( ( g  e.  A  /\  h  e.  A )  ->  ( ( x g u  /\  x h v )  ->  u  =  v ) )
Distinct variable groups:    f, g, x, y, h, u, v, F    A, g, h
Allowed substitution hints:    A( x, y, v, u, f)

Proof of Theorem tfrlem5
Dummy variables  z 
a  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
2 vex 3059 . . 3  |-  g  e. 
_V
31, 2tfrlem3a 7001 . 2  |-  ( g  e.  A  <->  E. z  e.  On  ( g  Fn  z  /\  A. a  e.  z  ( g `  a )  =  ( F `  ( g  |`  a ) ) ) )
4 vex 3059 . . 3  |-  h  e. 
_V
51, 4tfrlem3a 7001 . 2  |-  ( h  e.  A  <->  E. w  e.  On  ( h  Fn  w  /\  A. a  e.  w  ( h `  a )  =  ( F `  ( h  |`  a ) ) ) )
6 reeanv 2972 . . 3  |-  ( E. z  e.  On  E. w  e.  On  (
( g  Fn  z  /\  A. a  e.  z  ( g `  a
)  =  ( F `
 ( g  |`  a ) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a )  =  ( F `  ( h  |`  a ) ) ) )  <->  ( E. z  e.  On  ( g  Fn  z  /\  A. a  e.  z  ( g `  a )  =  ( F `  ( g  |`  a ) ) )  /\  E. w  e.  On  ( h  Fn  w  /\  A. a  e.  w  ( h `  a )  =  ( F `  ( h  |`  a ) ) ) ) )
7 simp2ll 1062 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  g  Fn  z
)
8 simp3l 1023 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  x g u )
9 fnbr 5618 . . . . . . . . 9  |-  ( ( g  Fn  z  /\  x g u )  ->  x  e.  z )
107, 8, 9syl2anc 659 . . . . . . . 8  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  x  e.  z )
11 simp2rl 1064 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  h  Fn  w
)
12 simp3r 1024 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  x h v )
13 fnbr 5618 . . . . . . . . 9  |-  ( ( h  Fn  w  /\  x h v )  ->  x  e.  w
)
1411, 12, 13syl2anc 659 . . . . . . . 8  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  x  e.  w
)
1510, 14elind 3624 . . . . . . 7  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  x  e.  ( z  i^i  w ) )
16 onin 4850 . . . . . . . . 9  |-  ( ( z  e.  On  /\  w  e.  On )  ->  ( z  i^i  w
)  e.  On )
17163ad2ant1 1016 . . . . . . . 8  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  ( z  i^i  w )  e.  On )
18 fnfun 5613 . . . . . . . . . 10  |-  ( g  Fn  z  ->  Fun  g )
197, 18syl 17 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  Fun  g )
20 inss1 3656 . . . . . . . . . 10  |-  ( z  i^i  w )  C_  z
21 fndm 5615 . . . . . . . . . . 11  |-  ( g  Fn  z  ->  dom  g  =  z )
227, 21syl 17 . . . . . . . . . 10  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  dom  g  =  z )
2320, 22syl5sseqr 3488 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  ( z  i^i  w )  C_  dom  g )
2419, 23jca 530 . . . . . . . 8  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  ( Fun  g  /\  ( z  i^i  w
)  C_  dom  g ) )
25 fnfun 5613 . . . . . . . . . 10  |-  ( h  Fn  w  ->  Fun  h )
2611, 25syl 17 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  Fun  h )
27 inss2 3657 . . . . . . . . . 10  |-  ( z  i^i  w )  C_  w
28 fndm 5615 . . . . . . . . . . 11  |-  ( h  Fn  w  ->  dom  h  =  w )
2911, 28syl 17 . . . . . . . . . 10  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  dom  h  =  w )
3027, 29syl5sseqr 3488 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  ( z  i^i  w )  C_  dom  h )
3126, 30jca 530 . . . . . . . 8  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  ( Fun  h  /\  ( z  i^i  w
)  C_  dom  h ) )
32 simp2lr 1063 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  A. a  e.  z  ( g `  a
)  =  ( F `
 ( g  |`  a ) ) )
33 ssralv 3500 . . . . . . . . 9  |-  ( ( z  i^i  w ) 
C_  z  ->  ( A. a  e.  z 
( g `  a
)  =  ( F `
 ( g  |`  a ) )  ->  A. a  e.  (
z  i^i  w )
( g `  a
)  =  ( F `
 ( g  |`  a ) ) ) )
3420, 32, 33mpsyl 62 . . . . . . . 8  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  A. a  e.  ( z  i^i  w ) ( g `  a
)  =  ( F `
 ( g  |`  a ) ) )
35 simp2rr 1065 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) )
36 ssralv 3500 . . . . . . . . 9  |-  ( ( z  i^i  w ) 
C_  w  ->  ( A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) )  ->  A. a  e.  (
z  i^i  w )
( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )
3727, 35, 36mpsyl 62 . . . . . . . 8  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  A. a  e.  ( z  i^i  w ) ( h `  a
)  =  ( F `
 ( h  |`  a ) ) )
3817, 24, 31, 34, 37tfrlem1 7000 . . . . . . 7  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  A. a  e.  ( z  i^i  w ) ( g `  a
)  =  ( h `
 a ) )
39 fveq2 5803 . . . . . . . . 9  |-  ( a  =  x  ->  (
g `  a )  =  ( g `  x ) )
40 fveq2 5803 . . . . . . . . 9  |-  ( a  =  x  ->  (
h `  a )  =  ( h `  x ) )
4139, 40eqeq12d 2422 . . . . . . . 8  |-  ( a  =  x  ->  (
( g `  a
)  =  ( h `
 a )  <->  ( g `  x )  =  ( h `  x ) ) )
4241rspcv 3153 . . . . . . 7  |-  ( x  e.  ( z  i^i  w )  ->  ( A. a  e.  (
z  i^i  w )
( g `  a
)  =  ( h `
 a )  -> 
( g `  x
)  =  ( h `
 x ) ) )
4315, 38, 42sylc 59 . . . . . 6  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  ( g `  x )  =  ( h `  x ) )
44 funbrfv 5841 . . . . . . 7  |-  ( Fun  g  ->  ( x
g u  ->  (
g `  x )  =  u ) )
4519, 8, 44sylc 59 . . . . . 6  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  ( g `  x )  =  u )
46 funbrfv 5841 . . . . . . 7  |-  ( Fun  h  ->  ( x h v  ->  (
h `  x )  =  v ) )
4726, 12, 46sylc 59 . . . . . 6  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  ( h `  x )  =  v )
4843, 45, 473eqtr3d 2449 . . . . 5  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  u  =  v )
49483exp 1194 . . . 4  |-  ( ( z  e.  On  /\  w  e.  On )  ->  ( ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  ->  ( (
x g u  /\  x h v )  ->  u  =  v ) ) )
5049rexlimivv 2898 . . 3  |-  ( E. z  e.  On  E. w  e.  On  (
( g  Fn  z  /\  A. a  e.  z  ( g `  a
)  =  ( F `
 ( g  |`  a ) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a )  =  ( F `  ( h  |`  a ) ) ) )  ->  ( (
x g u  /\  x h v )  ->  u  =  v ) )
516, 50sylbir 213 . 2  |-  ( ( E. z  e.  On  ( g  Fn  z  /\  A. a  e.  z  ( g `  a
)  =  ( F `
 ( g  |`  a ) ) )  /\  E. w  e.  On  ( h  Fn  w  /\  A. a  e.  w  ( h `  a )  =  ( F `  ( h  |`  a ) ) ) )  ->  ( (
x g u  /\  x h v )  ->  u  =  v ) )
523, 5, 51syl2anb 477 1  |-  ( ( g  e.  A  /\  h  e.  A )  ->  ( ( x g u  /\  x h v )  ->  u  =  v ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 972    = wceq 1403    e. wcel 1840   {cab 2385   A.wral 2751   E.wrex 2752    i^i cin 3410    C_ wss 3411   class class class wbr 4392   Oncon0 4819   dom cdm 4940    |` cres 4942   Fun wfun 5517    Fn wfn 5518   ` cfv 5523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 973  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-ral 2756  df-rex 2757  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-pss 3427  df-nul 3736  df-if 3883  df-sn 3970  df-pr 3972  df-tp 3974  df-op 3976  df-uni 4189  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4487  df-eprel 4731  df-id 4735  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-fv 5531
This theorem is referenced by:  tfrlem7  7007
  Copyright terms: Public domain W3C validator