MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem3a Structured version   Unicode version

Theorem tfrlem3a 6835
Description: Lemma for transfinite recursion. Let  A be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in  A for later use. (Contributed by NM, 9-Apr-1995.)
Hypotheses
Ref Expression
tfrlem3.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlem3.2  |-  G  e. 
_V
Assertion
Ref Expression
tfrlem3a  |-  ( G  e.  A  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
Distinct variable groups:    w, f, x, y, z, F    f, G, w, x, y, z
Allowed substitution hints:    A( x, y, z, w, f)

Proof of Theorem tfrlem3a
StepHypRef Expression
1 tfrlem3.2 . 2  |-  G  e. 
_V
2 fneq12 5503 . . . 4  |-  ( ( f  =  G  /\  x  =  z )  ->  ( f  Fn  x  <->  G  Fn  z ) )
3 simpll 753 . . . . . . 7  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  f  =  G )
4 simpr 461 . . . . . . 7  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  y  =  w )
53, 4fveq12d 5696 . . . . . 6  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  (
f `  y )  =  ( G `  w ) )
63, 4reseq12d 5110 . . . . . . 7  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  (
f  |`  y )  =  ( G  |`  w
) )
76fveq2d 5694 . . . . . 6  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  ( F `  ( f  |`  y ) )  =  ( F `  ( G  |`  w ) ) )
85, 7eqeq12d 2456 . . . . 5  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  (
( f `  y
)  =  ( F `
 ( f  |`  y ) )  <->  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
9 simpr 461 . . . . . 6  |-  ( ( f  =  G  /\  x  =  z )  ->  x  =  z )
109adantr 465 . . . . 5  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  x  =  z )
118, 10cbvraldva2 2950 . . . 4  |-  ( ( f  =  G  /\  x  =  z )  ->  ( A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) )  <->  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
122, 11anbi12d 710 . . 3  |-  ( ( f  =  G  /\  x  =  z )  ->  ( ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) )  <-> 
( G  Fn  z  /\  A. w  e.  z  ( G `  w
)  =  ( F `
 ( G  |`  w ) ) ) ) )
1312cbvrexdva 2953 . 2  |-  ( f  =  G  ->  ( E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) )  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w
)  =  ( F `
 ( G  |`  w ) ) ) ) )
14 tfrlem3.1 . 2  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
151, 13, 14elab2 3108 1  |-  ( G  e.  A  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2428   A.wral 2714   E.wrex 2715   _Vcvv 2971   Oncon0 4718    |` cres 4841    Fn wfn 5412   ` cfv 5417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-br 4292  df-opab 4350  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-res 4851  df-iota 5380  df-fun 5419  df-fn 5420  df-fv 5425
This theorem is referenced by:  tfrlem3  6836  tfrlem5  6838  tfrlem9a  6844
  Copyright terms: Public domain W3C validator