MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem15 Structured version   Unicode version

Theorem tfrlem15 7079
Description: Lemma for transfinite recursion. Without assuming ax-rep 4568, we can show that all proper initial subsets of recs are sets, while nothing larger is a set. (Contributed by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem15  |-  ( B  e.  On  ->  ( B  e.  dom recs ( F )  <->  (recs ( F )  |`  B )  e.  _V ) )
Distinct variable groups:    x, f,
y, B    f, F, x, y
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem15
StepHypRef Expression
1 tfrlem.1 . . . 4  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem9a 7073 . . 3  |-  ( B  e.  dom recs ( F
)  ->  (recs ( F )  |`  B )  e.  _V )
32adantl 466 . 2  |-  ( ( B  e.  On  /\  B  e.  dom recs ( F ) )  ->  (recs ( F )  |`  B )  e.  _V )
41tfrlem13 7077 . . . 4  |-  -. recs ( F )  e.  _V
5 simpr 461 . . . . 5  |-  ( ( B  e.  On  /\  (recs ( F )  |`  B )  e.  _V )  ->  (recs ( F )  |`  B )  e.  _V )
6 resss 5307 . . . . . . . 8  |-  (recs ( F )  |`  B ) 
C_ recs ( F )
76a1i 11 . . . . . . 7  |-  ( dom recs
( F )  C_  B  ->  (recs ( F )  |`  B )  C_ recs
( F ) )
81tfrlem6 7069 . . . . . . . . 9  |-  Rel recs ( F )
9 resdm 5325 . . . . . . . . 9  |-  ( Rel recs
( F )  -> 
(recs ( F )  |`  dom recs ( F ) )  = recs ( F ) )
108, 9ax-mp 5 . . . . . . . 8  |-  (recs ( F )  |`  dom recs ( F ) )  = recs ( F )
11 ssres2 5310 . . . . . . . 8  |-  ( dom recs
( F )  C_  B  ->  (recs ( F )  |`  dom recs ( F ) )  C_  (recs ( F )  |`  B ) )
1210, 11syl5eqssr 3544 . . . . . . 7  |-  ( dom recs
( F )  C_  B  -> recs ( F ) 
C_  (recs ( F )  |`  B )
)
137, 12eqssd 3516 . . . . . 6  |-  ( dom recs
( F )  C_  B  ->  (recs ( F )  |`  B )  = recs ( F ) )
1413eleq1d 2526 . . . . 5  |-  ( dom recs
( F )  C_  B  ->  ( (recs ( F )  |`  B )  e.  _V  <-> recs ( F
)  e.  _V )
)
155, 14syl5ibcom 220 . . . 4  |-  ( ( B  e.  On  /\  (recs ( F )  |`  B )  e.  _V )  ->  ( dom recs ( F )  C_  B  -> recs ( F )  e. 
_V ) )
164, 15mtoi 178 . . 3  |-  ( ( B  e.  On  /\  (recs ( F )  |`  B )  e.  _V )  ->  -.  dom recs ( F )  C_  B )
171tfrlem8 7071 . . . 4  |-  Ord  dom recs ( F )
18 eloni 4897 . . . . 5  |-  ( B  e.  On  ->  Ord  B )
1918adantr 465 . . . 4  |-  ( ( B  e.  On  /\  (recs ( F )  |`  B )  e.  _V )  ->  Ord  B )
20 ordtri1 4920 . . . . 5  |-  ( ( Ord  dom recs ( F
)  /\  Ord  B )  ->  ( dom recs ( F )  C_  B  <->  -.  B  e.  dom recs ( F ) ) )
2120con2bid 329 . . . 4  |-  ( ( Ord  dom recs ( F
)  /\  Ord  B )  ->  ( B  e. 
dom recs ( F )  <->  -.  dom recs ( F )  C_  B
) )
2217, 19, 21sylancr 663 . . 3  |-  ( ( B  e.  On  /\  (recs ( F )  |`  B )  e.  _V )  ->  ( B  e. 
dom recs ( F )  <->  -.  dom recs ( F )  C_  B
) )
2316, 22mpbird 232 . 2  |-  ( ( B  e.  On  /\  (recs ( F )  |`  B )  e.  _V )  ->  B  e.  dom recs ( F ) )
243, 23impbida 832 1  |-  ( B  e.  On  ->  ( B  e.  dom recs ( F )  <->  (recs ( F )  |`  B )  e.  _V ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   {cab 2442   A.wral 2807   E.wrex 2808   _Vcvv 3109    C_ wss 3471   Ord word 4886   Oncon0 4887   dom cdm 5008    |` cres 5010   Rel wrel 5013    Fn wfn 5589   ` cfv 5594  recscrecs 7059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-fv 5602  df-recs 7060
This theorem is referenced by:  tfrlem16  7080  tfr2b  7083
  Copyright terms: Public domain W3C validator