MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem13 Structured version   Unicode version

Theorem tfrlem13 7051
Description: Lemma for transfinite recursion. If recs is a set function, then  C is acceptable, and thus a subset of recs, but 
dom  C is bigger than  dom recs. This is a contradiction, so recs must be a proper class function. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem13  |-  -. recs ( F )  e.  _V
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem13
StepHypRef Expression
1 tfrlem.1 . . . 4  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem8 7045 . . 3  |-  Ord  dom recs ( F )
3 ordirr 4891 . . 3  |-  ( Ord 
dom recs ( F )  ->  -.  dom recs ( F )  e.  dom recs ( F
) )
42, 3ax-mp 5 . 2  |-  -.  dom recs ( F )  e.  dom recs ( F )
5 eqid 2462 . . . . 5  |-  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  =  (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )
61, 5tfrlem12 7050 . . . 4  |-  (recs ( F )  e.  _V  ->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )  e.  A )
7 elssuni 4270 . . . . 5  |-  ( (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  e.  A  ->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  C_  U. A
)
81recsfval 7042 . . . . 5  |- recs ( F )  =  U. A
97, 8syl6sseqr 3546 . . . 4  |-  ( (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  e.  A  ->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  C_ recs ( F ) )
10 dmss 5195 . . . 4  |-  ( (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  C_ recs ( F )  ->  dom  (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  C_  dom recs ( F ) )
116, 9, 103syl 20 . . 3  |-  (recs ( F )  e.  _V  ->  dom  (recs ( F )  u.  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )  C_  dom recs ( F ) )
122a1i 11 . . . . . 6  |-  (recs ( F )  e.  _V  ->  Ord  dom recs ( F
) )
13 dmexg 6707 . . . . . 6  |-  (recs ( F )  e.  _V  ->  dom recs ( F )  e.  _V )
14 elon2 4884 . . . . . 6  |-  ( dom recs
( F )  e.  On  <->  ( Ord  dom recs ( F )  /\  dom recs ( F )  e.  _V ) )
1512, 13, 14sylanbrc 664 . . . . 5  |-  (recs ( F )  e.  _V  ->  dom recs ( F )  e.  On )
16 sucidg 4951 . . . . 5  |-  ( dom recs
( F )  e.  On  ->  dom recs ( F )  e.  suc  dom recs ( F ) )
1715, 16syl 16 . . . 4  |-  (recs ( F )  e.  _V  ->  dom recs ( F )  e.  suc  dom recs ( F ) )
181, 5tfrlem10 7048 . . . . 5  |-  ( dom recs
( F )  e.  On  ->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  Fn  suc  dom recs
( F ) )
19 fndm 5673 . . . . 5  |-  ( (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  Fn 
suc  dom recs ( F )  ->  dom  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  =  suc  dom recs
( F ) )
2015, 18, 193syl 20 . . . 4  |-  (recs ( F )  e.  _V  ->  dom  (recs ( F )  u.  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )  =  suc  dom recs
( F ) )
2117, 20eleqtrrd 2553 . . 3  |-  (recs ( F )  e.  _V  ->  dom recs ( F )  e.  dom  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } ) )
2211, 21sseldd 3500 . 2  |-  (recs ( F )  e.  _V  ->  dom recs ( F )  e.  dom recs ( F
) )
234, 22mto 176 1  |-  -. recs ( F )  e.  _V
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    = wceq 1374    e. wcel 1762   {cab 2447   A.wral 2809   E.wrex 2810   _Vcvv 3108    u. cun 3469    C_ wss 3471   {csn 4022   <.cop 4028   U.cuni 4240   Ord word 4872   Oncon0 4873   suc csuc 4875   dom cdm 4994    |` cres 4996    Fn wfn 5576   ` cfv 5581  recscrecs 7033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-fv 5589  df-recs 7034
This theorem is referenced by:  tfrlem14  7052  tfrlem15  7053  tfrlem16  7054  tfr2b  7057
  Copyright terms: Public domain W3C validator