MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem11 Structured version   Unicode version

Theorem tfrlem11 7105
Description: Lemma for transfinite recursion. Compute the value of  C. (Contributed by NM, 18-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlem.3  |-  C  =  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
Assertion
Ref Expression
tfrlem11  |-  ( dom recs
( F )  e.  On  ->  ( B  e.  suc  dom recs ( F
)  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) ) )
Distinct variable groups:    x, f,
y, B    C, f, x, y    f, F, x, y
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem11
StepHypRef Expression
1 elsuci 5499 . 2  |-  ( B  e.  suc  dom recs ( F )  ->  ( B  e.  dom recs ( F )  \/  B  =  dom recs ( F ) ) )
2 tfrlem.1 . . . . . . . . 9  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
3 tfrlem.3 . . . . . . . . 9  |-  C  =  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
42, 3tfrlem10 7104 . . . . . . . 8  |-  ( dom recs
( F )  e.  On  ->  C  Fn  suc  dom recs ( F ) )
5 fnfun 5682 . . . . . . . 8  |-  ( C  Fn  suc  dom recs ( F )  ->  Fun  C )
64, 5syl 17 . . . . . . 7  |-  ( dom recs
( F )  e.  On  ->  Fun  C )
7 ssun1 3626 . . . . . . . . 9  |- recs ( F )  C_  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )
87, 3sseqtr4i 3494 . . . . . . . 8  |- recs ( F )  C_  C
92tfrlem9 7102 . . . . . . . . 9  |-  ( B  e.  dom recs ( F
)  ->  (recs ( F ) `  B
)  =  ( F `
 (recs ( F )  |`  B )
) )
10 funssfv 5887 . . . . . . . . . . . 12  |-  ( ( Fun  C  /\ recs ( F )  C_  C  /\  B  e.  dom recs ( F ) )  -> 
( C `  B
)  =  (recs ( F ) `  B
) )
11103expa 1205 . . . . . . . . . . 11  |-  ( ( ( Fun  C  /\ recs ( F )  C_  C
)  /\  B  e.  dom recs ( F ) )  ->  ( C `  B )  =  (recs ( F ) `  B ) )
1211adantrl 720 . . . . . . . . . 10  |-  ( ( ( Fun  C  /\ recs ( F )  C_  C
)  /\  ( dom recs ( F )  e.  On  /\  B  e.  dom recs ( F ) ) )  ->  ( C `  B )  =  (recs ( F ) `  B ) )
13 onelss 5475 . . . . . . . . . . . 12  |-  ( dom recs
( F )  e.  On  ->  ( B  e.  dom recs ( F )  ->  B  C_  dom recs ( F ) ) )
1413imp 430 . . . . . . . . . . 11  |-  ( ( dom recs ( F )  e.  On  /\  B  e.  dom recs ( F ) )  ->  B  C_  dom recs ( F ) )
15 fun2ssres 5633 . . . . . . . . . . . . 13  |-  ( ( Fun  C  /\ recs ( F )  C_  C  /\  B  C_  dom recs ( F ) )  -> 
( C  |`  B )  =  (recs ( F )  |`  B )
)
16153expa 1205 . . . . . . . . . . . 12  |-  ( ( ( Fun  C  /\ recs ( F )  C_  C
)  /\  B  C_  dom recs ( F ) )  -> 
( C  |`  B )  =  (recs ( F )  |`  B )
)
1716fveq2d 5876 . . . . . . . . . . 11  |-  ( ( ( Fun  C  /\ recs ( F )  C_  C
)  /\  B  C_  dom recs ( F ) )  -> 
( F `  ( C  |`  B ) )  =  ( F `  (recs ( F )  |`  B ) ) )
1814, 17sylan2 476 . . . . . . . . . 10  |-  ( ( ( Fun  C  /\ recs ( F )  C_  C
)  /\  ( dom recs ( F )  e.  On  /\  B  e.  dom recs ( F ) ) )  ->  ( F `  ( C  |`  B ) )  =  ( F `
 (recs ( F )  |`  B )
) )
1912, 18eqeq12d 2442 . . . . . . . . 9  |-  ( ( ( Fun  C  /\ recs ( F )  C_  C
)  /\  ( dom recs ( F )  e.  On  /\  B  e.  dom recs ( F ) ) )  ->  ( ( C `
 B )  =  ( F `  ( C  |`  B ) )  <-> 
(recs ( F ) `
 B )  =  ( F `  (recs ( F )  |`  B ) ) ) )
209, 19syl5ibr 224 . . . . . . . 8  |-  ( ( ( Fun  C  /\ recs ( F )  C_  C
)  /\  ( dom recs ( F )  e.  On  /\  B  e.  dom recs ( F ) ) )  ->  ( B  e. 
dom recs ( F )  -> 
( C `  B
)  =  ( F `
 ( C  |`  B ) ) ) )
218, 20mpanl2 685 . . . . . . 7  |-  ( ( Fun  C  /\  ( dom recs ( F )  e.  On  /\  B  e. 
dom recs ( F ) ) )  ->  ( B  e.  dom recs ( F )  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) ) )
226, 21sylan 473 . . . . . 6  |-  ( ( dom recs ( F )  e.  On  /\  ( dom recs ( F )  e.  On  /\  B  e. 
dom recs ( F ) ) )  ->  ( B  e.  dom recs ( F )  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) ) )
2322exp32 608 . . . . 5  |-  ( dom recs
( F )  e.  On  ->  ( dom recs ( F )  e.  On  ->  ( B  e.  dom recs ( F )  ->  ( B  e.  dom recs ( F )  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) ) ) ) )
2423pm2.43i 49 . . . 4  |-  ( dom recs
( F )  e.  On  ->  ( B  e.  dom recs ( F )  ->  ( B  e. 
dom recs ( F )  -> 
( C `  B
)  =  ( F `
 ( C  |`  B ) ) ) ) )
2524pm2.43d 50 . . 3  |-  ( dom recs
( F )  e.  On  ->  ( B  e.  dom recs ( F )  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) ) )
26 opex 4677 . . . . . . . . 9  |-  <. B , 
( F `  ( C  |`  B ) )
>.  e.  _V
2726snid 4021 . . . . . . . 8  |-  <. B , 
( F `  ( C  |`  B ) )
>.  e.  { <. B , 
( F `  ( C  |`  B ) )
>. }
28 opeq1 4181 . . . . . . . . . . 11  |-  ( B  =  dom recs ( F
)  ->  <. B , 
( F `  ( C  |`  B ) )
>.  =  <. dom recs ( F ) ,  ( F `  ( C  |`  B ) ) >.
)
2928adantl 467 . . . . . . . . . 10  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  <. B , 
( F `  ( C  |`  B ) )
>.  =  <. dom recs ( F ) ,  ( F `  ( C  |`  B ) ) >.
)
30 eqimss 3513 . . . . . . . . . . . . . 14  |-  ( B  =  dom recs ( F
)  ->  B  C_  dom recs ( F ) )
318, 15mp3an2 1348 . . . . . . . . . . . . . 14  |-  ( ( Fun  C  /\  B  C_ 
dom recs ( F ) )  ->  ( C  |`  B )  =  (recs ( F )  |`  B ) )
326, 30, 31syl2an 479 . . . . . . . . . . . . 13  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  ( C  |`  B )  =  (recs ( F )  |`  B ) )
33 reseq2 5111 . . . . . . . . . . . . . . 15  |-  ( B  =  dom recs ( F
)  ->  (recs ( F )  |`  B )  =  (recs ( F )  |`  dom recs ( F ) ) )
342tfrlem6 7099 . . . . . . . . . . . . . . . 16  |-  Rel recs ( F )
35 resdm 5157 . . . . . . . . . . . . . . . 16  |-  ( Rel recs
( F )  -> 
(recs ( F )  |`  dom recs ( F ) )  = recs ( F ) )
3634, 35ax-mp 5 . . . . . . . . . . . . . . 15  |-  (recs ( F )  |`  dom recs ( F ) )  = recs ( F )
3733, 36syl6eq 2477 . . . . . . . . . . . . . 14  |-  ( B  =  dom recs ( F
)  ->  (recs ( F )  |`  B )  = recs ( F ) )
3837adantl 467 . . . . . . . . . . . . 13  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  (recs ( F )  |`  B )  = recs ( F ) )
3932, 38eqtrd 2461 . . . . . . . . . . . 12  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  ( C  |`  B )  = recs ( F ) )
4039fveq2d 5876 . . . . . . . . . . 11  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  ( F `  ( C  |`  B ) )  =  ( F `
recs ( F ) ) )
4140opeq2d 4188 . . . . . . . . . 10  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  <. dom recs ( F ) ,  ( F `  ( C  |`  B ) ) >.  =  <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. )
4229, 41eqtrd 2461 . . . . . . . . 9  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  <. B , 
( F `  ( C  |`  B ) )
>.  =  <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. )
4342sneqd 4005 . . . . . . . 8  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  { <. B , 
( F `  ( C  |`  B ) )
>. }  =  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )
4427, 43syl5eleq 2514 . . . . . . 7  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  <. B , 
( F `  ( C  |`  B ) )
>.  e.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
45 elun2 3631 . . . . . . 7  |-  ( <. B ,  ( F `  ( C  |`  B ) ) >.  e.  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. }  ->  <. B ,  ( F `  ( C  |`  B ) ) >.  e.  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } ) )
4644, 45syl 17 . . . . . 6  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  <. B , 
( F `  ( C  |`  B ) )
>.  e.  (recs ( F )  u.  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } ) )
4746, 3syl6eleqr 2519 . . . . 5  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  <. B , 
( F `  ( C  |`  B ) )
>.  e.  C )
484adantr 466 . . . . . 6  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  C  Fn  suc  dom recs ( F ) )
49 simpr 462 . . . . . . 7  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  B  =  dom recs ( F ) )
50 sucidg 5511 . . . . . . . 8  |-  ( dom recs
( F )  e.  On  ->  dom recs ( F )  e.  suc  dom recs ( F ) )
5150adantr 466 . . . . . . 7  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  dom recs ( F )  e.  suc  dom recs ( F ) )
5249, 51eqeltrd 2508 . . . . . 6  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  B  e.  suc  dom recs ( F ) )
53 fnopfvb 5913 . . . . . 6  |-  ( ( C  Fn  suc  dom recs ( F )  /\  B  e.  suc  dom recs ( F
) )  ->  (
( C `  B
)  =  ( F `
 ( C  |`  B ) )  <->  <. B , 
( F `  ( C  |`  B ) )
>.  e.  C ) )
5448, 52, 53syl2anc 665 . . . . 5  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  ( ( C `  B )  =  ( F `  ( C  |`  B ) )  <->  <. B ,  ( F `  ( C  |`  B ) ) >.  e.  C ) )
5547, 54mpbird 235 . . . 4  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) )
5655ex 435 . . 3  |-  ( dom recs
( F )  e.  On  ->  ( B  =  dom recs ( F )  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) ) )
5725, 56jaod 381 . 2  |-  ( dom recs
( F )  e.  On  ->  ( ( B  e.  dom recs ( F )  \/  B  =  dom recs ( F ) )  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) ) )
581, 57syl5 33 1  |-  ( dom recs
( F )  e.  On  ->  ( B  e.  suc  dom recs ( F
)  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    \/ wo 369    /\ wa 370    = wceq 1437    e. wcel 1867   {cab 2405   A.wral 2773   E.wrex 2774    u. cun 3431    C_ wss 3433   {csn 3993   <.cop 3999   dom cdm 4845    |` cres 4847   Rel wrel 4850   Oncon0 5433   suc csuc 5435   Fun wfun 5586    Fn wfn 5587   ` cfv 5592  recscrecs 7088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-fv 5600  df-wrecs 7027  df-recs 7089
This theorem is referenced by:  tfrlem12  7106
  Copyright terms: Public domain W3C validator