MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem10 Structured version   Unicode version

Theorem tfrlem10 6943
Description: Lemma for transfinite recursion. We define class  C by extending recs with one ordered pair. We will assume, falsely, that domain of recs is a member of, and thus not equal to,  On. Using this assumption we will prove facts about  C that will lead to a contradiction in tfrlem14 6947, thus showing the domain of recs does in fact equal  On. Here we show (under the false assumption) that  C is a function extending the domain of recs
( F ) by one. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlem.3  |-  C  =  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
Assertion
Ref Expression
tfrlem10  |-  ( dom recs
( F )  e.  On  ->  C  Fn  suc  dom recs ( F ) )
Distinct variable groups:    x, f,
y, C    f, F, x, y
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem10
StepHypRef Expression
1 fvex 5796 . . . . . . 7  |-  ( F `
recs ( F ) )  e.  _V
2 funsng 5559 . . . . . . 7  |-  ( ( dom recs ( F )  e.  On  /\  ( F ` recs ( F
) )  e.  _V )  ->  Fun  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
31, 2mpan2 671 . . . . . 6  |-  ( dom recs
( F )  e.  On  ->  Fun  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )
4 tfrlem.1 . . . . . . 7  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
54tfrlem7 6939 . . . . . 6  |-  Fun recs ( F )
63, 5jctil 537 . . . . 5  |-  ( dom recs
( F )  e.  On  ->  ( Fun recs ( F )  /\  Fun  {
<. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } ) )
71dmsnop 5408 . . . . . . 7  |-  dom  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. }  =  { dom recs ( F ) }
87ineq2i 3644 . . . . . 6  |-  ( dom recs
( F )  i^i 
dom  { <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  ( dom recs ( F
)  i^i  { dom recs ( F ) } )
94tfrlem8 6940 . . . . . . 7  |-  Ord  dom recs ( F )
10 orddisj 4852 . . . . . . 7  |-  ( Ord 
dom recs ( F )  -> 
( dom recs ( F
)  i^i  { dom recs ( F ) } )  =  (/) )
119, 10ax-mp 5 . . . . . 6  |-  ( dom recs
( F )  i^i 
{ dom recs ( F
) } )  =  (/)
128, 11eqtri 2479 . . . . 5  |-  ( dom recs
( F )  i^i 
dom  { <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  (/)
13 funun 5555 . . . . 5  |-  ( ( ( Fun recs ( F
)  /\  Fun  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )  /\  ( dom recs ( F )  i^i 
dom  { <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  (/) )  ->  Fun  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } ) )
146, 12, 13sylancl 662 . . . 4  |-  ( dom recs
( F )  e.  On  ->  Fun  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } ) )
157uneq2i 3602 . . . . 5  |-  ( dom recs
( F )  u. 
dom  { <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  ( dom recs ( F
)  u.  { dom recs ( F ) } )
16 dmun 5141 . . . . 5  |-  dom  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  =  ( dom recs ( F )  u.  dom  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )
17 df-suc 4820 . . . . 5  |-  suc  dom recs ( F )  =  ( dom recs ( F )  u.  { dom recs ( F ) } )
1815, 16, 173eqtr4i 2489 . . . 4  |-  dom  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  =  suc  dom recs
( F )
1914, 18jctir 538 . . 3  |-  ( dom recs
( F )  e.  On  ->  ( Fun  (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  /\  dom  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )  =  suc  dom recs ( F ) ) )
20 df-fn 5516 . . 3  |-  ( (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  Fn 
suc  dom recs ( F )  <-> 
( Fun  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  /\  dom  (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  suc  dom recs ( F
) ) )
2119, 20sylibr 212 . 2  |-  ( dom recs
( F )  e.  On  ->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  Fn  suc  dom recs
( F ) )
22 tfrlem.3 . . 3  |-  C  =  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
2322fneq1i 5600 . 2  |-  ( C  Fn  suc  dom recs ( F )  <->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  Fn  suc  dom recs
( F ) )
2421, 23sylibr 212 1  |-  ( dom recs
( F )  e.  On  ->  C  Fn  suc  dom recs ( F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   {cab 2436   A.wral 2793   E.wrex 2794   _Vcvv 3065    u. cun 3421    i^i cin 3422   (/)c0 3732   {csn 3972   <.cop 3978   Ord word 4813   Oncon0 4814   suc csuc 4816   dom cdm 4935    |` cres 4937   Fun wfun 5507    Fn wfn 5508   ` cfv 5513  recscrecs 6928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4508  ax-nul 4516  ax-pow 4565  ax-pr 4626  ax-un 6469
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2599  df-ne 2644  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3067  df-sbc 3282  df-csb 3384  df-dif 3426  df-un 3428  df-in 3430  df-ss 3437  df-pss 3439  df-nul 3733  df-if 3887  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4187  df-iun 4268  df-br 4388  df-opab 4446  df-mpt 4447  df-tr 4481  df-eprel 4727  df-id 4731  df-po 4736  df-so 4737  df-fr 4774  df-we 4776  df-ord 4817  df-on 4818  df-suc 4820  df-xp 4941  df-rel 4942  df-cnv 4943  df-co 4944  df-dm 4945  df-rn 4946  df-res 4947  df-ima 4948  df-iota 5476  df-fun 5515  df-fn 5516  df-fv 5521  df-recs 6929
This theorem is referenced by:  tfrlem11  6944  tfrlem12  6945  tfrlem13  6946
  Copyright terms: Public domain W3C validator