MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem10 Unicode version

Theorem tfrlem10 6607
Description: Lemma for transfinite recursion. We define class  C by extending recs with one ordered pair. We will assume, falsely, that domain of recs is a member of, and thus not equal to,  On. Using this assumption we will prove facts about  C that will lead to a contradiction in tfrlem14 6611, thus showing the domain of recs does in fact equal  On. Here we show (under the false assumption) that  C is a function extending the domain of recs
( F ) by one. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlem.3  |-  C  =  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
Assertion
Ref Expression
tfrlem10  |-  ( dom recs
( F )  e.  On  ->  C  Fn  suc  dom recs ( F ) )
Distinct variable groups:    x, f,
y, C    f, F, x, y
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem10
StepHypRef Expression
1 fvex 5701 . . . . . . 7  |-  ( F `
recs ( F ) )  e.  _V
2 funsng 5456 . . . . . . 7  |-  ( ( dom recs ( F )  e.  On  /\  ( F ` recs ( F
) )  e.  _V )  ->  Fun  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
31, 2mpan2 653 . . . . . 6  |-  ( dom recs
( F )  e.  On  ->  Fun  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )
4 tfrlem.1 . . . . . . 7  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
54tfrlem7 6603 . . . . . 6  |-  Fun recs ( F )
63, 5jctil 524 . . . . 5  |-  ( dom recs
( F )  e.  On  ->  ( Fun recs ( F )  /\  Fun  {
<. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } ) )
71dmsnop 5303 . . . . . . 7  |-  dom  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. }  =  { dom recs ( F ) }
87ineq2i 3499 . . . . . 6  |-  ( dom recs
( F )  i^i 
dom  { <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  ( dom recs ( F
)  i^i  { dom recs ( F ) } )
94tfrlem8 6604 . . . . . . 7  |-  Ord  dom recs ( F )
10 orddisj 4579 . . . . . . 7  |-  ( Ord 
dom recs ( F )  -> 
( dom recs ( F
)  i^i  { dom recs ( F ) } )  =  (/) )
119, 10ax-mp 8 . . . . . 6  |-  ( dom recs
( F )  i^i 
{ dom recs ( F
) } )  =  (/)
128, 11eqtri 2424 . . . . 5  |-  ( dom recs
( F )  i^i 
dom  { <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  (/)
13 funun 5454 . . . . 5  |-  ( ( ( Fun recs ( F
)  /\  Fun  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )  /\  ( dom recs ( F )  i^i 
dom  { <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  (/) )  ->  Fun  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } ) )
146, 12, 13sylancl 644 . . . 4  |-  ( dom recs
( F )  e.  On  ->  Fun  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } ) )
157uneq2i 3458 . . . . 5  |-  ( dom recs
( F )  u. 
dom  { <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  ( dom recs ( F
)  u.  { dom recs ( F ) } )
16 dmun 5035 . . . . 5  |-  dom  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  =  ( dom recs ( F )  u.  dom  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )
17 df-suc 4547 . . . . 5  |-  suc  dom recs ( F )  =  ( dom recs ( F )  u.  { dom recs ( F ) } )
1815, 16, 173eqtr4i 2434 . . . 4  |-  dom  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  =  suc  dom recs
( F )
1914, 18jctir 525 . . 3  |-  ( dom recs
( F )  e.  On  ->  ( Fun  (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  /\  dom  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )  =  suc  dom recs ( F ) ) )
20 df-fn 5416 . . 3  |-  ( (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  Fn 
suc  dom recs ( F )  <-> 
( Fun  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  /\  dom  (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  suc  dom recs ( F
) ) )
2119, 20sylibr 204 . 2  |-  ( dom recs
( F )  e.  On  ->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  Fn  suc  dom recs
( F ) )
22 tfrlem.3 . . 3  |-  C  =  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
2322fneq1i 5498 . 2  |-  ( C  Fn  suc  dom recs ( F )  <->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  Fn  suc  dom recs
( F ) )
2421, 23sylibr 204 1  |-  ( dom recs
( F )  e.  On  ->  C  Fn  suc  dom recs ( F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   {cab 2390   A.wral 2666   E.wrex 2667   _Vcvv 2916    u. cun 3278    i^i cin 3279   (/)c0 3588   {csn 3774   <.cop 3777   Ord word 4540   Oncon0 4541   suc csuc 4543   dom cdm 4837    |` cres 4839   Fun wfun 5407    Fn wfn 5408   ` cfv 5413  recscrecs 6591
This theorem is referenced by:  tfrlem11  6608  tfrlem12  6609  tfrlem13  6610
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-suc 4547  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-fv 5421  df-recs 6592
  Copyright terms: Public domain W3C validator