MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem10 Structured version   Visualization version   Unicode version

Theorem tfrlem10 7105
Description: Lemma for transfinite recursion. We define class  C by extending recs with one ordered pair. We will assume, falsely, that domain of recs is a member of, and thus not equal to,  On. Using this assumption we will prove facts about  C that will lead to a contradiction in tfrlem14 7109, thus showing the domain of recs does in fact equal  On. Here we show (under the false assumption) that  C is a function extending the domain of recs
( F ) by one. (Contributed by NM, 14-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlem.3  |-  C  =  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
Assertion
Ref Expression
tfrlem10  |-  ( dom recs
( F )  e.  On  ->  C  Fn  suc  dom recs ( F ) )
Distinct variable groups:    x, f,
y, C    f, F, x, y
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem10
StepHypRef Expression
1 fvex 5875 . . . . . . 7  |-  ( F `
recs ( F ) )  e.  _V
2 funsng 5628 . . . . . . 7  |-  ( ( dom recs ( F )  e.  On  /\  ( F ` recs ( F
) )  e.  _V )  ->  Fun  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
31, 2mpan2 677 . . . . . 6  |-  ( dom recs
( F )  e.  On  ->  Fun  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )
4 tfrlem.1 . . . . . . 7  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
54tfrlem7 7101 . . . . . 6  |-  Fun recs ( F )
63, 5jctil 540 . . . . 5  |-  ( dom recs
( F )  e.  On  ->  ( Fun recs ( F )  /\  Fun  {
<. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } ) )
71dmsnop 5310 . . . . . . 7  |-  dom  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. }  =  { dom recs ( F ) }
87ineq2i 3631 . . . . . 6  |-  ( dom recs
( F )  i^i 
dom  { <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  ( dom recs ( F
)  i^i  { dom recs ( F ) } )
94tfrlem8 7102 . . . . . . 7  |-  Ord  dom recs ( F )
10 orddisj 5461 . . . . . . 7  |-  ( Ord 
dom recs ( F )  -> 
( dom recs ( F
)  i^i  { dom recs ( F ) } )  =  (/) )
119, 10ax-mp 5 . . . . . 6  |-  ( dom recs
( F )  i^i 
{ dom recs ( F
) } )  =  (/)
128, 11eqtri 2473 . . . . 5  |-  ( dom recs
( F )  i^i 
dom  { <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  (/)
13 funun 5624 . . . . 5  |-  ( ( ( Fun recs ( F
)  /\  Fun  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )  /\  ( dom recs ( F )  i^i 
dom  { <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  (/) )  ->  Fun  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } ) )
146, 12, 13sylancl 668 . . . 4  |-  ( dom recs
( F )  e.  On  ->  Fun  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } ) )
157uneq2i 3585 . . . . 5  |-  ( dom recs
( F )  u. 
dom  { <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  ( dom recs ( F
)  u.  { dom recs ( F ) } )
16 dmun 5041 . . . . 5  |-  dom  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  =  ( dom recs ( F )  u.  dom  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )
17 df-suc 5429 . . . . 5  |-  suc  dom recs ( F )  =  ( dom recs ( F )  u.  { dom recs ( F ) } )
1815, 16, 173eqtr4i 2483 . . . 4  |-  dom  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  =  suc  dom recs
( F )
1914, 18jctir 541 . . 3  |-  ( dom recs
( F )  e.  On  ->  ( Fun  (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  /\  dom  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )  =  suc  dom recs ( F ) ) )
20 df-fn 5585 . . 3  |-  ( (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  Fn 
suc  dom recs ( F )  <-> 
( Fun  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  /\  dom  (recs ( F )  u. 
{ <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. } )  =  suc  dom recs ( F
) ) )
2119, 20sylibr 216 . 2  |-  ( dom recs
( F )  e.  On  ->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  Fn  suc  dom recs
( F ) )
22 tfrlem.3 . . 3  |-  C  =  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
2322fneq1i 5670 . 2  |-  ( C  Fn  suc  dom recs ( F )  <->  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )  Fn  suc  dom recs
( F ) )
2421, 23sylibr 216 1  |-  ( dom recs
( F )  e.  On  ->  C  Fn  suc  dom recs ( F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1444    e. wcel 1887   {cab 2437   A.wral 2737   E.wrex 2738   _Vcvv 3045    u. cun 3402    i^i cin 3403   (/)c0 3731   {csn 3968   <.cop 3974   dom cdm 4834    |` cres 4836   Ord word 5422   Oncon0 5423   suc csuc 5425   Fun wfun 5576    Fn wfn 5577   ` cfv 5582  recscrecs 7089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-fv 5590  df-wrecs 7028  df-recs 7090
This theorem is referenced by:  tfrlem11  7106  tfrlem12  7107  tfrlem13  7108
  Copyright terms: Public domain W3C validator