MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr1 Structured version   Unicode version

Theorem tfr1 7063
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47. We start with an arbitrary class  G, normally a function, and define a class  A of all "acceptable" functions. The final function we're interested in is the union  F  = recs ( G ) of them.  F is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of  F. In this first part we show that  F is a function whose domain is all ordinal numbers. (Contributed by NM, 17-Aug-1994.) (Revised by Mario Carneiro, 18-Jan-2015.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr1  |-  F  Fn  On

Proof of Theorem tfr1
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . . 4  |-  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
21tfrlem7 7049 . . 3  |-  Fun recs ( G )
31tfrlem14 7057 . . 3  |-  dom recs ( G )  =  On
4 df-fn 5589 . . 3  |-  (recs ( G )  Fn  On  <->  ( Fun recs ( G )  /\  dom recs ( G
)  =  On ) )
52, 3, 4mpbir2an 918 . 2  |- recs ( G )  Fn  On
6 tfr.1 . . 3  |-  F  = recs ( G )
76fneq1i 5673 . 2  |-  ( F  Fn  On  <-> recs ( G
)  Fn  On )
85, 7mpbir 209 1  |-  F  Fn  On
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1379   {cab 2452   A.wral 2814   E.wrex 2815   Oncon0 4878   dom cdm 4999    |` cres 5001   Fun wfun 5580    Fn wfn 5581   ` cfv 5586  recscrecs 7038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-recs 7039
This theorem is referenced by:  tfr2  7064  tfr3  7065  recsfnon  7066  rdgfnon  7081  dfac8alem  8406  dfac12lem1  8519  dfac12lem2  8520  zorn2lem1  8872  zorn2lem2  8873  zorn2lem4  8875  zorn2lem5  8876  zorn2lem6  8877  zorn2lem7  8878  ttukeylem3  8887  ttukeylem5  8889  ttukeylem6  8890  dnnumch1  30594  dnnumch3lem  30596  dnnumch3  30597  aomclem6  30609
  Copyright terms: Public domain W3C validator