Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfisg Structured version   Visualization version   Unicode version

Theorem tfisg 30528
Description: A closed form of tfis 6700. (Contributed by Scott Fenton, 8-Jun-2011.)
Assertion
Ref Expression
tfisg  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  A. x  e.  On  ph )
Distinct variable groups:    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem tfisg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3500 . . . 4  |-  { x  e.  On  |  ph }  C_  On
2 dfss3 3408 . . . . . . . . 9  |-  ( z 
C_  { x  e.  On  |  ph }  <->  A. y  e.  z  y  e.  { x  e.  On  |  ph }
)
3 nfcv 2612 . . . . . . . . . . . 12  |-  F/_ x On
43elrabsf 3294 . . . . . . . . . . 11  |-  ( y  e.  { x  e.  On  |  ph }  <->  ( y  e.  On  /\  [. y  /  x ]. ph ) )
54simprbi 471 . . . . . . . . . 10  |-  ( y  e.  { x  e.  On  |  ph }  ->  [. y  /  x ]. ph )
65ralimi 2796 . . . . . . . . 9  |-  ( A. y  e.  z  y  e.  { x  e.  On  |  ph }  ->  A. y  e.  z  [. y  /  x ]. ph )
72, 6sylbi 200 . . . . . . . 8  |-  ( z 
C_  { x  e.  On  |  ph }  ->  A. y  e.  z 
[. y  /  x ]. ph )
8 nfcv 2612 . . . . . . . . . . . 12  |-  F/_ x
z
9 nfsbc1v 3275 . . . . . . . . . . . 12  |-  F/ x [. y  /  x ]. ph
108, 9nfral 2789 . . . . . . . . . . 11  |-  F/ x A. y  e.  z  [. y  /  x ]. ph
11 nfsbc1v 3275 . . . . . . . . . . 11  |-  F/ x [. z  /  x ]. ph
1210, 11nfim 2023 . . . . . . . . . 10  |-  F/ x
( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph )
13 raleq 2973 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( A. y  e.  x  [. y  /  x ]. ph  <->  A. y  e.  z  [. y  /  x ]. ph )
)
14 sbceq1a 3266 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( ph 
<-> 
[. z  /  x ]. ph ) )
1513, 14imbi12d 327 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( A. y  e.  x  [. y  /  x ]. ph  ->  ph )  <->  ( A. y  e.  z 
[. y  /  x ]. ph  ->  [. z  /  x ]. ph ) ) )
1612, 15rspc 3130 . . . . . . . . 9  |-  ( z  e.  On  ->  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  ( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph ) ) )
1716impcom 437 . . . . . . . 8  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  ( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph ) )
187, 17syl5 32 . . . . . . 7  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  (
z  C_  { x  e.  On  |  ph }  ->  [. z  /  x ]. ph ) )
19 simpr 468 . . . . . . 7  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  z  e.  On )
2018, 19jctild 552 . . . . . 6  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  (
z  C_  { x  e.  On  |  ph }  ->  ( z  e.  On  /\ 
[. z  /  x ]. ph ) ) )
213elrabsf 3294 . . . . . 6  |-  ( z  e.  { x  e.  On  |  ph }  <->  ( z  e.  On  /\  [. z  /  x ]. ph ) )
2220, 21syl6ibr 235 . . . . 5  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  (
z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph }
) )
2322ralrimiva 2809 . . . 4  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  A. z  e.  On  ( z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph } ) )
24 tfi 6699 . . . 4  |-  ( ( { x  e.  On  |  ph }  C_  On  /\ 
A. z  e.  On  ( z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph }
) )  ->  { x  e.  On  |  ph }  =  On )
251, 23, 24sylancr 676 . . 3  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  { x  e.  On  |  ph }  =  On )
2625eqcomd 2477 . 2  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  On  =  { x  e.  On  |  ph } )
27 rabid2 2954 . 2  |-  ( On  =  { x  e.  On  |  ph }  <->  A. x  e.  On  ph )
2826, 27sylib 201 1  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  A. x  e.  On  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   {crab 2760   [.wsbc 3255    C_ wss 3390   Oncon0 5430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-tr 4491  df-eprel 4750  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-ord 5433  df-on 5434
This theorem is referenced by:  soseq  30563
  Copyright terms: Public domain W3C validator