Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfisg Unicode version

Theorem tfisg 25418
Description: A closed form of tfis 4793. (Contributed by Scott Fenton, 8-Jun-2011.)
Assertion
Ref Expression
tfisg  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  A. x  e.  On  ph )
Distinct variable groups:    ph, y    x, y
Allowed substitution hint:    ph( x)

Proof of Theorem tfisg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3388 . . . 4  |-  { x  e.  On  |  ph }  C_  On
2 dfss3 3298 . . . . . . . . 9  |-  ( z 
C_  { x  e.  On  |  ph }  <->  A. y  e.  z  y  e.  { x  e.  On  |  ph }
)
3 nfcv 2540 . . . . . . . . . . . 12  |-  F/_ x On
43elrabsf 3159 . . . . . . . . . . 11  |-  ( y  e.  { x  e.  On  |  ph }  <->  ( y  e.  On  /\  [. y  /  x ]. ph ) )
54simprbi 451 . . . . . . . . . 10  |-  ( y  e.  { x  e.  On  |  ph }  ->  [. y  /  x ]. ph )
65ralimi 2741 . . . . . . . . 9  |-  ( A. y  e.  z  y  e.  { x  e.  On  |  ph }  ->  A. y  e.  z  [. y  /  x ]. ph )
72, 6sylbi 188 . . . . . . . 8  |-  ( z 
C_  { x  e.  On  |  ph }  ->  A. y  e.  z 
[. y  /  x ]. ph )
8 nfcv 2540 . . . . . . . . . . . 12  |-  F/_ x
z
9 nfsbc1v 3140 . . . . . . . . . . . 12  |-  F/ x [. y  /  x ]. ph
108, 9nfral 2719 . . . . . . . . . . 11  |-  F/ x A. y  e.  z  [. y  /  x ]. ph
11 nfsbc1v 3140 . . . . . . . . . . 11  |-  F/ x [. z  /  x ]. ph
1210, 11nfim 1828 . . . . . . . . . 10  |-  F/ x
( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph )
13 raleq 2864 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( A. y  e.  x  [. y  /  x ]. ph  <->  A. y  e.  z  [. y  /  x ]. ph )
)
14 sbceq1a 3131 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( ph 
<-> 
[. z  /  x ]. ph ) )
1513, 14imbi12d 312 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( A. y  e.  x  [. y  /  x ]. ph  ->  ph )  <->  ( A. y  e.  z 
[. y  /  x ]. ph  ->  [. z  /  x ]. ph ) ) )
1612, 15rspc 3006 . . . . . . . . 9  |-  ( z  e.  On  ->  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  ( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph ) ) )
1716impcom 420 . . . . . . . 8  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  ( A. y  e.  z  [. y  /  x ]. ph  ->  [. z  /  x ]. ph ) )
187, 17syl5 30 . . . . . . 7  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  (
z  C_  { x  e.  On  |  ph }  ->  [. z  /  x ]. ph ) )
19 simpr 448 . . . . . . 7  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  z  e.  On )
2018, 19jctild 528 . . . . . 6  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  (
z  C_  { x  e.  On  |  ph }  ->  ( z  e.  On  /\ 
[. z  /  x ]. ph ) ) )
213elrabsf 3159 . . . . . 6  |-  ( z  e.  { x  e.  On  |  ph }  <->  ( z  e.  On  /\  [. z  /  x ]. ph ) )
2220, 21syl6ibr 219 . . . . 5  |-  ( ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  /\  z  e.  On )  ->  (
z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph }
) )
2322ralrimiva 2749 . . . 4  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  A. z  e.  On  ( z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph } ) )
24 tfi 4792 . . . 4  |-  ( ( { x  e.  On  |  ph }  C_  On  /\ 
A. z  e.  On  ( z  C_  { x  e.  On  |  ph }  ->  z  e.  { x  e.  On  |  ph }
) )  ->  { x  e.  On  |  ph }  =  On )
251, 23, 24sylancr 645 . . 3  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  { x  e.  On  |  ph }  =  On )
2625eqcomd 2409 . 2  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  On  =  { x  e.  On  |  ph } )
27 rabid2 2845 . 2  |-  ( On  =  { x  e.  On  |  ph }  <->  A. x  e.  On  ph )
2826, 27sylib 189 1  |-  ( A. x  e.  On  ( A. y  e.  x  [. y  /  x ]. ph 
->  ph )  ->  A. x  e.  On  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   {crab 2670   [.wsbc 3121    C_ wss 3280   Oncon0 4541
This theorem is referenced by:  soseq  25468
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-tr 4263  df-eprel 4454  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545
  Copyright terms: Public domain W3C validator