MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfindsg Structured version   Unicode version

Theorem tfindsg 6694
Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal  B instead of zero. Remark in [TakeutiZaring] p. 57. (Contributed by NM, 5-Mar-2004.)
Hypotheses
Ref Expression
tfindsg.1  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
tfindsg.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
tfindsg.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
tfindsg.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
tfindsg.5  |-  ( B  e.  On  ->  ps )
tfindsg.6  |-  ( ( ( y  e.  On  /\  B  e.  On )  /\  B  C_  y
)  ->  ( ch  ->  th ) )
tfindsg.7  |-  ( ( ( Lim  x  /\  B  e.  On )  /\  B  C_  x )  ->  ( A. y  e.  x  ( B  C_  y  ->  ch )  ->  ph ) )
Assertion
Ref Expression
tfindsg  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  B  C_  A
)  ->  ta )
Distinct variable groups:    x, A    x, y, B    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem tfindsg
StepHypRef Expression
1 sseq2 3521 . . . . . . 7  |-  ( x  =  (/)  ->  ( B 
C_  x  <->  B  C_  (/) ) )
21adantl 466 . . . . . 6  |-  ( ( B  =  (/)  /\  x  =  (/) )  ->  ( B  C_  x  <->  B  C_  (/) ) )
3 eqeq2 2472 . . . . . . . 8  |-  ( B  =  (/)  ->  ( x  =  B  <->  x  =  (/) ) )
4 tfindsg.1 . . . . . . . 8  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
53, 4syl6bir 229 . . . . . . 7  |-  ( B  =  (/)  ->  ( x  =  (/)  ->  ( ph  <->  ps ) ) )
65imp 429 . . . . . 6  |-  ( ( B  =  (/)  /\  x  =  (/) )  ->  ( ph 
<->  ps ) )
72, 6imbi12d 320 . . . . 5  |-  ( ( B  =  (/)  /\  x  =  (/) )  ->  (
( B  C_  x  ->  ph )  <->  ( B  C_  (/)  ->  ps ) ) )
81imbi1d 317 . . . . . 6  |-  ( x  =  (/)  ->  ( ( B  C_  x  ->  ph )  <->  ( B  C_  (/) 
->  ph ) ) )
9 ss0 3825 . . . . . . . . 9  |-  ( B 
C_  (/)  ->  B  =  (/) )
109con3i 135 . . . . . . . 8  |-  ( -.  B  =  (/)  ->  -.  B  C_  (/) )
1110pm2.21d 106 . . . . . . 7  |-  ( -.  B  =  (/)  ->  ( B  C_  (/)  ->  ( ph  <->  ps ) ) )
1211pm5.74d 247 . . . . . 6  |-  ( -.  B  =  (/)  ->  (
( B  C_  (/)  ->  ph )  <->  ( B  C_  (/)  ->  ps ) ) )
138, 12sylan9bbr 700 . . . . 5  |-  ( ( -.  B  =  (/)  /\  x  =  (/) )  -> 
( ( B  C_  x  ->  ph )  <->  ( B  C_  (/)  ->  ps ) ) )
147, 13pm2.61ian 790 . . . 4  |-  ( x  =  (/)  ->  ( ( B  C_  x  ->  ph )  <->  ( B  C_  (/) 
->  ps ) ) )
1514imbi2d 316 . . 3  |-  ( x  =  (/)  ->  ( ( B  e.  On  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  On  ->  ( B  C_  (/)  ->  ps ) ) ) )
16 sseq2 3521 . . . . 5  |-  ( x  =  y  ->  ( B  C_  x  <->  B  C_  y
) )
17 tfindsg.2 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
1816, 17imbi12d 320 . . . 4  |-  ( x  =  y  ->  (
( B  C_  x  ->  ph )  <->  ( B  C_  y  ->  ch )
) )
1918imbi2d 316 . . 3  |-  ( x  =  y  ->  (
( B  e.  On  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  On  ->  ( B  C_  y  ->  ch )
) ) )
20 sseq2 3521 . . . . 5  |-  ( x  =  suc  y  -> 
( B  C_  x  <->  B 
C_  suc  y )
)
21 tfindsg.3 . . . . 5  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
2220, 21imbi12d 320 . . . 4  |-  ( x  =  suc  y  -> 
( ( B  C_  x  ->  ph )  <->  ( B  C_ 
suc  y  ->  th )
) )
2322imbi2d 316 . . 3  |-  ( x  =  suc  y  -> 
( ( B  e.  On  ->  ( B  C_  x  ->  ph ) )  <-> 
( B  e.  On  ->  ( B  C_  suc  y  ->  th ) ) ) )
24 sseq2 3521 . . . . 5  |-  ( x  =  A  ->  ( B  C_  x  <->  B  C_  A
) )
25 tfindsg.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
2624, 25imbi12d 320 . . . 4  |-  ( x  =  A  ->  (
( B  C_  x  ->  ph )  <->  ( B  C_  A  ->  ta )
) )
2726imbi2d 316 . . 3  |-  ( x  =  A  ->  (
( B  e.  On  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  On  ->  ( B  C_  A  ->  ta )
) ) )
28 tfindsg.5 . . . 4  |-  ( B  e.  On  ->  ps )
2928a1d 25 . . 3  |-  ( B  e.  On  ->  ( B  C_  (/)  ->  ps )
)
30 vex 3112 . . . . . . . . . . . . . 14  |-  y  e. 
_V
3130sucex 6645 . . . . . . . . . . . . 13  |-  suc  y  e.  _V
3231eqvinc 3226 . . . . . . . . . . . 12  |-  ( suc  y  =  B  <->  E. x
( x  =  suc  y  /\  x  =  B ) )
3328, 4syl5ibr 221 . . . . . . . . . . . . . 14  |-  ( x  =  B  ->  ( B  e.  On  ->  ph ) )
3421biimpd 207 . . . . . . . . . . . . . 14  |-  ( x  =  suc  y  -> 
( ph  ->  th )
)
3533, 34sylan9r 658 . . . . . . . . . . . . 13  |-  ( ( x  =  suc  y  /\  x  =  B
)  ->  ( B  e.  On  ->  th )
)
3635exlimiv 1723 . . . . . . . . . . . 12  |-  ( E. x ( x  =  suc  y  /\  x  =  B )  ->  ( B  e.  On  ->  th ) )
3732, 36sylbi 195 . . . . . . . . . . 11  |-  ( suc  y  =  B  -> 
( B  e.  On  ->  th ) )
3837eqcoms 2469 . . . . . . . . . 10  |-  ( B  =  suc  y  -> 
( B  e.  On  ->  th ) )
3938imim2i 14 . . . . . . . . 9  |-  ( ( B  C_  suc  y  ->  B  =  suc  y )  ->  ( B  C_  suc  y  ->  ( B  e.  On  ->  th )
) )
4039a1d 25 . . . . . . . 8  |-  ( ( B  C_  suc  y  ->  B  =  suc  y )  ->  ( ( B 
C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  ( B  e.  On  ->  th )
) ) )
4140com4r 86 . . . . . . 7  |-  ( B  e.  On  ->  (
( B  C_  suc  y  ->  B  =  suc  y )  ->  (
( B  C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  th ) ) ) )
4241adantl 466 . . . . . 6  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( ( B  C_  suc  y  ->  B  =  suc  y )  -> 
( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) ) )
43 df-ne 2654 . . . . . . . . 9  |-  ( B  =/=  suc  y  <->  -.  B  =  suc  y )
4443anbi2i 694 . . . . . . . 8  |-  ( ( B  C_  suc  y  /\  B  =/=  suc  y )  <->  ( B  C_  suc  y  /\  -.  B  =  suc  y ) )
45 annim 425 . . . . . . . 8  |-  ( ( B  C_  suc  y  /\  -.  B  =  suc  y )  <->  -.  ( B  C_  suc  y  ->  B  =  suc  y ) )
4644, 45bitri 249 . . . . . . 7  |-  ( ( B  C_  suc  y  /\  B  =/=  suc  y )  <->  -.  ( B  C_  suc  y  ->  B  =  suc  y ) )
47 onsssuc 4974 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  C_  y  <->  B  e.  suc  y ) )
48 suceloni 6647 . . . . . . . . . . 11  |-  ( y  e.  On  ->  suc  y  e.  On )
49 onelpss 4927 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  suc  y  e.  On )  ->  ( B  e. 
suc  y  <->  ( B  C_ 
suc  y  /\  B  =/=  suc  y ) ) )
5048, 49sylan2 474 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  e.  suc  y 
<->  ( B  C_  suc  y  /\  B  =/=  suc  y ) ) )
5147, 50bitrd 253 . . . . . . . . 9  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  C_  y  <->  ( B  C_  suc  y  /\  B  =/=  suc  y )
) )
5251ancoms 453 . . . . . . . 8  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( B  C_  y  <->  ( B  C_  suc  y  /\  B  =/=  suc  y )
) )
53 tfindsg.6 . . . . . . . . . . . 12  |-  ( ( ( y  e.  On  /\  B  e.  On )  /\  B  C_  y
)  ->  ( ch  ->  th ) )
5453ex 434 . . . . . . . . . . 11  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( B  C_  y  ->  ( ch  ->  th )
) )
55 ax-1 6 . . . . . . . . . . 11  |-  ( th 
->  ( B  C_  suc  y  ->  th ) )
5654, 55syl8 70 . . . . . . . . . 10  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( B  C_  y  ->  ( ch  ->  ( B  C_  suc  y  ->  th ) ) ) )
5756a2d 26 . . . . . . . . 9  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( ( B  C_  y  ->  ch )  -> 
( B  C_  y  ->  ( B  C_  suc  y  ->  th ) ) ) )
5857com23 78 . . . . . . . 8  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( B  C_  y  ->  ( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) ) )
5952, 58sylbird 235 . . . . . . 7  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( ( B  C_  suc  y  /\  B  =/= 
suc  y )  -> 
( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) ) )
6046, 59syl5bir 218 . . . . . 6  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( -.  ( B 
C_  suc  y  ->  B  =  suc  y )  ->  ( ( B 
C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  th )
) ) )
6142, 60pm2.61d 158 . . . . 5  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) )
6261ex 434 . . . 4  |-  ( y  e.  On  ->  ( B  e.  On  ->  ( ( B  C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  th ) ) ) )
6362a2d 26 . . 3  |-  ( y  e.  On  ->  (
( B  e.  On  ->  ( B  C_  y  ->  ch ) )  -> 
( B  e.  On  ->  ( B  C_  suc  y  ->  th ) ) ) )
64 pm2.27 39 . . . . . . . . 9  |-  ( B  e.  On  ->  (
( B  e.  On  ->  ( B  C_  y  ->  ch ) )  -> 
( B  C_  y  ->  ch ) ) )
6564ralimdv 2867 . . . . . . . 8  |-  ( B  e.  On  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch ) )  ->  A. y  e.  x  ( B  C_  y  ->  ch ) ) )
6665ad2antlr 726 . . . . . . 7  |-  ( ( ( Lim  x  /\  B  e.  On )  /\  B  C_  x )  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch )
)  ->  A. y  e.  x  ( B  C_  y  ->  ch )
) )
67 tfindsg.7 . . . . . . 7  |-  ( ( ( Lim  x  /\  B  e.  On )  /\  B  C_  x )  ->  ( A. y  e.  x  ( B  C_  y  ->  ch )  ->  ph ) )
6866, 67syld 44 . . . . . 6  |-  ( ( ( Lim  x  /\  B  e.  On )  /\  B  C_  x )  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch )
)  ->  ph ) )
6968exp31 604 . . . . 5  |-  ( Lim  x  ->  ( B  e.  On  ->  ( B  C_  x  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch ) )  ->  ph )
) ) )
7069com3l 81 . . . 4  |-  ( B  e.  On  ->  ( B  C_  x  ->  ( Lim  x  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch ) )  ->  ph )
) ) )
7170com4t 85 . . 3  |-  ( Lim  x  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch ) )  ->  ( B  e.  On  ->  ( B  C_  x  ->  ph ) ) ) )
7215, 19, 23, 27, 29, 63, 71tfinds 6693 . 2  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( B  C_  A  ->  ta ) ) )
7372imp31 432 1  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  B  C_  A
)  ->  ta )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395   E.wex 1613    e. wcel 1819    =/= wne 2652   A.wral 2807    C_ wss 3471   (/)c0 3793   Oncon0 4887   Lim wlim 4888   suc csuc 4889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-tr 4551  df-eprel 4800  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893
This theorem is referenced by:  tfindsg2  6695  oaordi  7213  infensuc  7714  r1ordg  8213
  Copyright terms: Public domain W3C validator