MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfindsg Structured version   Unicode version

Theorem tfindsg 6673
Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal  B instead of zero. Remark in [TakeutiZaring] p. 57. (Contributed by NM, 5-Mar-2004.)
Hypotheses
Ref Expression
tfindsg.1  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
tfindsg.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
tfindsg.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
tfindsg.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
tfindsg.5  |-  ( B  e.  On  ->  ps )
tfindsg.6  |-  ( ( ( y  e.  On  /\  B  e.  On )  /\  B  C_  y
)  ->  ( ch  ->  th ) )
tfindsg.7  |-  ( ( ( Lim  x  /\  B  e.  On )  /\  B  C_  x )  ->  ( A. y  e.  x  ( B  C_  y  ->  ch )  ->  ph ) )
Assertion
Ref Expression
tfindsg  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  B  C_  A
)  ->  ta )
Distinct variable groups:    x, A    x, y, B    ch, x    th, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    ch( y)    th( y)    ta( y)    A( y)

Proof of Theorem tfindsg
StepHypRef Expression
1 sseq2 3526 . . . . . . 7  |-  ( x  =  (/)  ->  ( B 
C_  x  <->  B  C_  (/) ) )
21adantl 466 . . . . . 6  |-  ( ( B  =  (/)  /\  x  =  (/) )  ->  ( B  C_  x  <->  B  C_  (/) ) )
3 eqeq2 2482 . . . . . . . 8  |-  ( B  =  (/)  ->  ( x  =  B  <->  x  =  (/) ) )
4 tfindsg.1 . . . . . . . 8  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
53, 4syl6bir 229 . . . . . . 7  |-  ( B  =  (/)  ->  ( x  =  (/)  ->  ( ph  <->  ps ) ) )
65imp 429 . . . . . 6  |-  ( ( B  =  (/)  /\  x  =  (/) )  ->  ( ph 
<->  ps ) )
72, 6imbi12d 320 . . . . 5  |-  ( ( B  =  (/)  /\  x  =  (/) )  ->  (
( B  C_  x  ->  ph )  <->  ( B  C_  (/)  ->  ps ) ) )
81imbi1d 317 . . . . . 6  |-  ( x  =  (/)  ->  ( ( B  C_  x  ->  ph )  <->  ( B  C_  (/) 
->  ph ) ) )
9 ss0 3816 . . . . . . . . 9  |-  ( B 
C_  (/)  ->  B  =  (/) )
109con3i 135 . . . . . . . 8  |-  ( -.  B  =  (/)  ->  -.  B  C_  (/) )
1110pm2.21d 106 . . . . . . 7  |-  ( -.  B  =  (/)  ->  ( B  C_  (/)  ->  ( ph  <->  ps ) ) )
1211pm5.74d 247 . . . . . 6  |-  ( -.  B  =  (/)  ->  (
( B  C_  (/)  ->  ph )  <->  ( B  C_  (/)  ->  ps ) ) )
138, 12sylan9bbr 700 . . . . 5  |-  ( ( -.  B  =  (/)  /\  x  =  (/) )  -> 
( ( B  C_  x  ->  ph )  <->  ( B  C_  (/)  ->  ps ) ) )
147, 13pm2.61ian 788 . . . 4  |-  ( x  =  (/)  ->  ( ( B  C_  x  ->  ph )  <->  ( B  C_  (/) 
->  ps ) ) )
1514imbi2d 316 . . 3  |-  ( x  =  (/)  ->  ( ( B  e.  On  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  On  ->  ( B  C_  (/)  ->  ps ) ) ) )
16 sseq2 3526 . . . . 5  |-  ( x  =  y  ->  ( B  C_  x  <->  B  C_  y
) )
17 tfindsg.2 . . . . 5  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
1816, 17imbi12d 320 . . . 4  |-  ( x  =  y  ->  (
( B  C_  x  ->  ph )  <->  ( B  C_  y  ->  ch )
) )
1918imbi2d 316 . . 3  |-  ( x  =  y  ->  (
( B  e.  On  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  On  ->  ( B  C_  y  ->  ch )
) ) )
20 sseq2 3526 . . . . 5  |-  ( x  =  suc  y  -> 
( B  C_  x  <->  B 
C_  suc  y )
)
21 tfindsg.3 . . . . 5  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
2220, 21imbi12d 320 . . . 4  |-  ( x  =  suc  y  -> 
( ( B  C_  x  ->  ph )  <->  ( B  C_ 
suc  y  ->  th )
) )
2322imbi2d 316 . . 3  |-  ( x  =  suc  y  -> 
( ( B  e.  On  ->  ( B  C_  x  ->  ph ) )  <-> 
( B  e.  On  ->  ( B  C_  suc  y  ->  th ) ) ) )
24 sseq2 3526 . . . . 5  |-  ( x  =  A  ->  ( B  C_  x  <->  B  C_  A
) )
25 tfindsg.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
2624, 25imbi12d 320 . . . 4  |-  ( x  =  A  ->  (
( B  C_  x  ->  ph )  <->  ( B  C_  A  ->  ta )
) )
2726imbi2d 316 . . 3  |-  ( x  =  A  ->  (
( B  e.  On  ->  ( B  C_  x  ->  ph ) )  <->  ( B  e.  On  ->  ( B  C_  A  ->  ta )
) ) )
28 tfindsg.5 . . . 4  |-  ( B  e.  On  ->  ps )
2928a1d 25 . . 3  |-  ( B  e.  On  ->  ( B  C_  (/)  ->  ps )
)
30 vex 3116 . . . . . . . . . . . . . 14  |-  y  e. 
_V
3130sucex 6624 . . . . . . . . . . . . 13  |-  suc  y  e.  _V
3231eqvinc 3230 . . . . . . . . . . . 12  |-  ( suc  y  =  B  <->  E. x
( x  =  suc  y  /\  x  =  B ) )
3328, 4syl5ibr 221 . . . . . . . . . . . . . 14  |-  ( x  =  B  ->  ( B  e.  On  ->  ph ) )
3421biimpd 207 . . . . . . . . . . . . . 14  |-  ( x  =  suc  y  -> 
( ph  ->  th )
)
3533, 34sylan9r 658 . . . . . . . . . . . . 13  |-  ( ( x  =  suc  y  /\  x  =  B
)  ->  ( B  e.  On  ->  th )
)
3635exlimiv 1698 . . . . . . . . . . . 12  |-  ( E. x ( x  =  suc  y  /\  x  =  B )  ->  ( B  e.  On  ->  th ) )
3732, 36sylbi 195 . . . . . . . . . . 11  |-  ( suc  y  =  B  -> 
( B  e.  On  ->  th ) )
3837eqcoms 2479 . . . . . . . . . 10  |-  ( B  =  suc  y  -> 
( B  e.  On  ->  th ) )
3938imim2i 14 . . . . . . . . 9  |-  ( ( B  C_  suc  y  ->  B  =  suc  y )  ->  ( B  C_  suc  y  ->  ( B  e.  On  ->  th )
) )
4039a1d 25 . . . . . . . 8  |-  ( ( B  C_  suc  y  ->  B  =  suc  y )  ->  ( ( B 
C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  ( B  e.  On  ->  th )
) ) )
4140com4r 86 . . . . . . 7  |-  ( B  e.  On  ->  (
( B  C_  suc  y  ->  B  =  suc  y )  ->  (
( B  C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  th ) ) ) )
4241adantl 466 . . . . . 6  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( ( B  C_  suc  y  ->  B  =  suc  y )  -> 
( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) ) )
43 df-ne 2664 . . . . . . . . 9  |-  ( B  =/=  suc  y  <->  -.  B  =  suc  y )
4443anbi2i 694 . . . . . . . 8  |-  ( ( B  C_  suc  y  /\  B  =/=  suc  y )  <->  ( B  C_  suc  y  /\  -.  B  =  suc  y ) )
45 annim 425 . . . . . . . 8  |-  ( ( B  C_  suc  y  /\  -.  B  =  suc  y )  <->  -.  ( B  C_  suc  y  ->  B  =  suc  y ) )
4644, 45bitri 249 . . . . . . 7  |-  ( ( B  C_  suc  y  /\  B  =/=  suc  y )  <->  -.  ( B  C_  suc  y  ->  B  =  suc  y ) )
47 onsssuc 4965 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  C_  y  <->  B  e.  suc  y ) )
48 suceloni 6626 . . . . . . . . . . 11  |-  ( y  e.  On  ->  suc  y  e.  On )
49 onelpss 4918 . . . . . . . . . . 11  |-  ( ( B  e.  On  /\  suc  y  e.  On )  ->  ( B  e. 
suc  y  <->  ( B  C_ 
suc  y  /\  B  =/=  suc  y ) ) )
5048, 49sylan2 474 . . . . . . . . . 10  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  e.  suc  y 
<->  ( B  C_  suc  y  /\  B  =/=  suc  y ) ) )
5147, 50bitrd 253 . . . . . . . . 9  |-  ( ( B  e.  On  /\  y  e.  On )  ->  ( B  C_  y  <->  ( B  C_  suc  y  /\  B  =/=  suc  y )
) )
5251ancoms 453 . . . . . . . 8  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( B  C_  y  <->  ( B  C_  suc  y  /\  B  =/=  suc  y )
) )
53 tfindsg.6 . . . . . . . . . . . 12  |-  ( ( ( y  e.  On  /\  B  e.  On )  /\  B  C_  y
)  ->  ( ch  ->  th ) )
5453ex 434 . . . . . . . . . . 11  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( B  C_  y  ->  ( ch  ->  th )
) )
55 ax-1 6 . . . . . . . . . . 11  |-  ( th 
->  ( B  C_  suc  y  ->  th ) )
5654, 55syl8 70 . . . . . . . . . 10  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( B  C_  y  ->  ( ch  ->  ( B  C_  suc  y  ->  th ) ) ) )
5756a2d 26 . . . . . . . . 9  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( ( B  C_  y  ->  ch )  -> 
( B  C_  y  ->  ( B  C_  suc  y  ->  th ) ) ) )
5857com23 78 . . . . . . . 8  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( B  C_  y  ->  ( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) ) )
5952, 58sylbird 235 . . . . . . 7  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( ( B  C_  suc  y  /\  B  =/= 
suc  y )  -> 
( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) ) )
6046, 59syl5bir 218 . . . . . 6  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( -.  ( B 
C_  suc  y  ->  B  =  suc  y )  ->  ( ( B 
C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  th )
) ) )
6142, 60pm2.61d 158 . . . . 5  |-  ( ( y  e.  On  /\  B  e.  On )  ->  ( ( B  C_  y  ->  ch )  -> 
( B  C_  suc  y  ->  th ) ) )
6261ex 434 . . . 4  |-  ( y  e.  On  ->  ( B  e.  On  ->  ( ( B  C_  y  ->  ch )  ->  ( B  C_  suc  y  ->  th ) ) ) )
6362a2d 26 . . 3  |-  ( y  e.  On  ->  (
( B  e.  On  ->  ( B  C_  y  ->  ch ) )  -> 
( B  e.  On  ->  ( B  C_  suc  y  ->  th ) ) ) )
64 pm2.27 39 . . . . . . . . 9  |-  ( B  e.  On  ->  (
( B  e.  On  ->  ( B  C_  y  ->  ch ) )  -> 
( B  C_  y  ->  ch ) ) )
6564ralimdv 2874 . . . . . . . 8  |-  ( B  e.  On  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch ) )  ->  A. y  e.  x  ( B  C_  y  ->  ch ) ) )
6665ad2antlr 726 . . . . . . 7  |-  ( ( ( Lim  x  /\  B  e.  On )  /\  B  C_  x )  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch )
)  ->  A. y  e.  x  ( B  C_  y  ->  ch )
) )
67 tfindsg.7 . . . . . . 7  |-  ( ( ( Lim  x  /\  B  e.  On )  /\  B  C_  x )  ->  ( A. y  e.  x  ( B  C_  y  ->  ch )  ->  ph ) )
6866, 67syld 44 . . . . . 6  |-  ( ( ( Lim  x  /\  B  e.  On )  /\  B  C_  x )  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch )
)  ->  ph ) )
6968exp31 604 . . . . 5  |-  ( Lim  x  ->  ( B  e.  On  ->  ( B  C_  x  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch ) )  ->  ph )
) ) )
7069com3l 81 . . . 4  |-  ( B  e.  On  ->  ( B  C_  x  ->  ( Lim  x  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch ) )  ->  ph )
) ) )
7170com4t 85 . . 3  |-  ( Lim  x  ->  ( A. y  e.  x  ( B  e.  On  ->  ( B  C_  y  ->  ch ) )  ->  ( B  e.  On  ->  ( B  C_  x  ->  ph ) ) ) )
7215, 19, 23, 27, 29, 63, 71tfinds 6672 . 2  |-  ( A  e.  On  ->  ( B  e.  On  ->  ( B  C_  A  ->  ta ) ) )
7372imp31 432 1  |-  ( ( ( A  e.  On  /\  B  e.  On )  /\  B  C_  A
)  ->  ta )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2814    C_ wss 3476   (/)c0 3785   Oncon0 4878   Lim wlim 4879   suc csuc 4880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-tr 4541  df-eprel 4791  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884
This theorem is referenced by:  tfindsg2  6674  oaordi  7192  infensuc  7692  r1ordg  8192
  Copyright terms: Public domain W3C validator