MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfinds2 Structured version   Unicode version

Theorem tfinds2 6679
Description: Transfinite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last three are the basis and the induction hypotheses (for successor and limit ordinals respectively). Theorem Schema 4 of [Suppes] p. 197. The wff  ta is an auxiliary antecedent to help shorten proofs using this theorem. (Contributed by NM, 4-Sep-2004.)
Hypotheses
Ref Expression
tfinds2.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
tfinds2.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
tfinds2.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
tfinds2.4  |-  ( ta 
->  ps )
tfinds2.5  |-  ( y  e.  On  ->  ( ta  ->  ( ch  ->  th ) ) )
tfinds2.6  |-  ( Lim  x  ->  ( ta  ->  ( A. y  e.  x  ch  ->  ph )
) )
Assertion
Ref Expression
tfinds2  |-  ( x  e.  On  ->  ( ta  ->  ph ) )
Distinct variable groups:    x, y, ta    ps, x    ch, x    th, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)

Proof of Theorem tfinds2
StepHypRef Expression
1 tfinds2.4 . . 3  |-  ( ta 
->  ps )
2 0ex 4563 . . . 4  |-  (/)  e.  _V
3 tfinds2.1 . . . . 5  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
43imbi2d 316 . . . 4  |-  ( x  =  (/)  ->  ( ( ta  ->  ph )  <->  ( ta  ->  ps ) ) )
52, 4sbcie 3346 . . 3  |-  ( [. (/)  /  x ]. ( ta 
->  ph )  <->  ( ta  ->  ps ) )
61, 5mpbir 209 . 2  |-  [. (/)  /  x ]. ( ta  ->  ph )
7 vex 3096 . . . . . 6  |-  x  e. 
_V
8 tfinds2.5 . . . . . . . 8  |-  ( y  e.  On  ->  ( ta  ->  ( ch  ->  th ) ) )
98a2d 26 . . . . . . 7  |-  ( y  e.  On  ->  (
( ta  ->  ch )  ->  ( ta  ->  th ) ) )
109sbcth 3326 . . . . . 6  |-  ( x  e.  _V  ->  [. x  /  y ]. (
y  e.  On  ->  ( ( ta  ->  ch )  ->  ( ta  ->  th ) ) ) )
117, 10ax-mp 5 . . . . 5  |-  [. x  /  y ]. (
y  e.  On  ->  ( ( ta  ->  ch )  ->  ( ta  ->  th ) ) )
12 sbcimg 3353 . . . . . 6  |-  ( x  e.  _V  ->  ( [. x  /  y ]. ( y  e.  On  ->  ( ( ta  ->  ch )  ->  ( ta  ->  th ) ) )  <-> 
( [. x  /  y ]. y  e.  On  ->  [. x  /  y ]. ( ( ta  ->  ch )  ->  ( ta  ->  th ) ) ) ) )
137, 12ax-mp 5 . . . . 5  |-  ( [. x  /  y ]. (
y  e.  On  ->  ( ( ta  ->  ch )  ->  ( ta  ->  th ) ) )  <->  ( [. x  /  y ]. y  e.  On  ->  [. x  / 
y ]. ( ( ta 
->  ch )  ->  ( ta  ->  th ) ) ) )
1411, 13mpbi 208 . . . 4  |-  ( [. x  /  y ]. y  e.  On  ->  [. x  / 
y ]. ( ( ta 
->  ch )  ->  ( ta  ->  th ) ) )
15 sbcel1v 3376 . . . 4  |-  ( [. x  /  y ]. y  e.  On  <->  x  e.  On )
16 sbcimg 3353 . . . . 5  |-  ( x  e.  _V  ->  ( [. x  /  y ]. ( ( ta  ->  ch )  ->  ( ta  ->  th ) )  <->  ( [. x  /  y ]. ( ta  ->  ch )  ->  [. x  /  y ]. ( ta  ->  th )
) ) )
177, 16ax-mp 5 . . . 4  |-  ( [. x  /  y ]. (
( ta  ->  ch )  ->  ( ta  ->  th ) )  <->  ( [. x  /  y ]. ( ta  ->  ch )  ->  [. x  /  y ]. ( ta  ->  th )
) )
1814, 15, 173imtr3i 265 . . 3  |-  ( x  e.  On  ->  ( [. x  /  y ]. ( ta  ->  ch )  ->  [. x  /  y ]. ( ta  ->  th )
) )
19 tfinds2.2 . . . . . . 7  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
2019bicomd 201 . . . . . 6  |-  ( x  =  y  ->  ( ch 
<-> 
ph ) )
2120equcoms 1779 . . . . 5  |-  ( y  =  x  ->  ( ch 
<-> 
ph ) )
2221imbi2d 316 . . . 4  |-  ( y  =  x  ->  (
( ta  ->  ch ) 
<->  ( ta  ->  ph )
) )
237, 22sbcie 3346 . . 3  |-  ( [. x  /  y ]. ( ta  ->  ch )  <->  ( ta  ->  ph ) )
24 vex 3096 . . . . . . 7  |-  y  e. 
_V
2524sucex 6627 . . . . . 6  |-  suc  y  e.  _V
26 tfinds2.3 . . . . . . 7  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
2726imbi2d 316 . . . . . 6  |-  ( x  =  suc  y  -> 
( ( ta  ->  ph )  <->  ( ta  ->  th ) ) )
2825, 27sbcie 3346 . . . . 5  |-  ( [. suc  y  /  x ]. ( ta  ->  ph )  <->  ( ta  ->  th )
)
2928sbcbii 3371 . . . 4  |-  ( [. x  /  y ]. [. suc  y  /  x ]. ( ta  ->  ph )  <->  [. x  / 
y ]. ( ta  ->  th ) )
30 suceq 4929 . . . . 5  |-  ( x  =  y  ->  suc  x  =  suc  y )
3130sbcco2 3335 . . . 4  |-  ( [. x  /  y ]. [. suc  y  /  x ]. ( ta  ->  ph )  <->  [. suc  x  /  x ]. ( ta 
->  ph ) )
3229, 31bitr3i 251 . . 3  |-  ( [. x  /  y ]. ( ta  ->  th )  <->  [. suc  x  /  x ]. ( ta 
->  ph ) )
3318, 23, 323imtr3g 269 . 2  |-  ( x  e.  On  ->  (
( ta  ->  ph )  ->  [. suc  x  /  x ]. ( ta  ->  ph ) ) )
34 sbsbc 3315 . . . 4  |-  ( [ y  /  x ] A. y  e.  x  ( ta  ->  ch )  <->  [. y  /  x ]. A. y  e.  x  ( ta  ->  ch )
)
3522sbralie 3081 . . . 4  |-  ( [ y  /  x ] A. y  e.  x  ( ta  ->  ch )  <->  A. x  e.  y  ( ta  ->  ph ) )
3634, 35bitr3i 251 . . 3  |-  ( [. y  /  x ]. A. y  e.  x  ( ta  ->  ch )  <->  A. x  e.  y  ( ta  ->  ph ) )
37 r19.21v 2846 . . . . . . . 8  |-  ( A. y  e.  x  ( ta  ->  ch )  <->  ( ta  ->  A. y  e.  x  ch ) )
38 tfinds2.6 . . . . . . . . 9  |-  ( Lim  x  ->  ( ta  ->  ( A. y  e.  x  ch  ->  ph )
) )
3938a2d 26 . . . . . . . 8  |-  ( Lim  x  ->  ( ( ta  ->  A. y  e.  x  ch )  ->  ( ta 
->  ph ) ) )
4037, 39syl5bi 217 . . . . . . 7  |-  ( Lim  x  ->  ( A. y  e.  x  ( ta  ->  ch )  -> 
( ta  ->  ph )
) )
4140sbcth 3326 . . . . . 6  |-  ( y  e.  _V  ->  [. y  /  x ]. ( Lim  x  ->  ( A. y  e.  x  ( ta  ->  ch )  -> 
( ta  ->  ph )
) ) )
4224, 41ax-mp 5 . . . . 5  |-  [. y  /  x ]. ( Lim  x  ->  ( A. y  e.  x  ( ta  ->  ch )  -> 
( ta  ->  ph )
) )
43 sbcimg 3353 . . . . . 6  |-  ( y  e.  _V  ->  ( [. y  /  x ]. ( Lim  x  -> 
( A. y  e.  x  ( ta  ->  ch )  ->  ( ta  ->  ph ) ) )  <-> 
( [. y  /  x ]. Lim  x  ->  [. y  /  x ]. ( A. y  e.  x  ( ta  ->  ch )  -> 
( ta  ->  ph )
) ) ) )
4424, 43ax-mp 5 . . . . 5  |-  ( [. y  /  x ]. ( Lim  x  ->  ( A. y  e.  x  ( ta  ->  ch )  -> 
( ta  ->  ph )
) )  <->  ( [. y  /  x ]. Lim  x  ->  [. y  /  x ]. ( A. y  e.  x  ( ta  ->  ch )  ->  ( ta  ->  ph ) ) ) )
4542, 44mpbi 208 . . . 4  |-  ( [. y  /  x ]. Lim  x  ->  [. y  /  x ]. ( A. y  e.  x  ( ta  ->  ch )  ->  ( ta  ->  ph ) ) )
46 limeq 4876 . . . . 5  |-  ( x  =  y  ->  ( Lim  x  <->  Lim  y ) )
4724, 46sbcie 3346 . . . 4  |-  ( [. y  /  x ]. Lim  x 
<->  Lim  y )
48 sbcimg 3353 . . . . 5  |-  ( y  e.  _V  ->  ( [. y  /  x ]. ( A. y  e.  x  ( ta  ->  ch )  ->  ( ta  ->  ph ) )  <->  ( [. y  /  x ]. A. y  e.  x  ( ta  ->  ch )  ->  [. y  /  x ]. ( ta  ->  ph )
) ) )
4924, 48ax-mp 5 . . . 4  |-  ( [. y  /  x ]. ( A. y  e.  x  ( ta  ->  ch )  ->  ( ta  ->  ph )
)  <->  ( [. y  /  x ]. A. y  e.  x  ( ta  ->  ch )  ->  [. y  /  x ]. ( ta 
->  ph ) ) )
5045, 47, 493imtr3i 265 . . 3  |-  ( Lim  y  ->  ( [. y  /  x ]. A. y  e.  x  ( ta  ->  ch )  ->  [. y  /  x ]. ( ta  ->  ph )
) )
5136, 50syl5bir 218 . 2  |-  ( Lim  y  ->  ( A. x  e.  y  ( ta  ->  ph )  ->  [. y  /  x ]. ( ta 
->  ph ) ) )
526, 33, 51tfindes 6678 1  |-  ( x  e.  On  ->  ( ta  ->  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1381   [wsb 1724    e. wcel 1802   A.wral 2791   _Vcvv 3093   [.wsbc 3311   (/)c0 3767   Oncon0 4864   Lim wlim 4865   suc csuc 4866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pr 4672  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-rab 2800  df-v 3095  df-sbc 3312  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-br 4434  df-opab 4492  df-tr 4527  df-eprel 4777  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870
This theorem is referenced by:  inar1  9151  grur1a  9195
  Copyright terms: Public domain W3C validator