MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfinds Structured version   Unicode version

Theorem tfinds 6570
Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. (Contributed by NM, 16-Apr-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
tfinds.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
tfinds.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
tfinds.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
tfinds.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
tfinds.5  |-  ps
tfinds.6  |-  ( y  e.  On  ->  ( ch  ->  th ) )
tfinds.7  |-  ( Lim  x  ->  ( A. y  e.  x  ch  ->  ph ) )
Assertion
Ref Expression
tfinds  |-  ( A  e.  On  ->  ta )
Distinct variable groups:    x, y    x, A    ch, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    ch( y)    th( x, y)    ta( y)    A( y)

Proof of Theorem tfinds
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tfinds.2 . 2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
2 tfinds.4 . 2  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
3 dflim3 6558 . . . . 5  |-  ( Lim  x  <->  ( Ord  x  /\  -.  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) ) )
43notbii 296 . . . 4  |-  ( -. 
Lim  x  <->  -.  ( Ord  x  /\  -.  (
x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) ) )
5 iman 424 . . . . 5  |-  ( ( Ord  x  ->  (
x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) )  <->  -.  ( Ord  x  /\  -.  ( x  =  (/)  \/ 
E. y  e.  On  x  =  suc  y ) ) )
6 eloni 4827 . . . . . . 7  |-  ( x  e.  On  ->  Ord  x )
7 pm2.27 39 . . . . . . 7  |-  ( Ord  x  ->  ( ( Ord  x  ->  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) )  -> 
( x  =  (/)  \/ 
E. y  e.  On  x  =  suc  y ) ) )
86, 7syl 16 . . . . . 6  |-  ( x  e.  On  ->  (
( Ord  x  ->  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) )  ->  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) ) )
9 tfinds.5 . . . . . . . . 9  |-  ps
10 tfinds.1 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
119, 10mpbiri 233 . . . . . . . 8  |-  ( x  =  (/)  ->  ph )
1211a1d 25 . . . . . . 7  |-  ( x  =  (/)  ->  ( A. y  e.  x  ch  ->  ph ) )
13 nfra1 2875 . . . . . . . . 9  |-  F/ y A. y  e.  x  ch
14 nfv 1674 . . . . . . . . 9  |-  F/ y
ph
1513, 14nfim 1855 . . . . . . . 8  |-  F/ y ( A. y  e.  x  ch  ->  ph )
16 vex 3071 . . . . . . . . . . . . 13  |-  y  e. 
_V
1716sucid 4896 . . . . . . . . . . . 12  |-  y  e. 
suc  y
181rspcv 3165 . . . . . . . . . . . 12  |-  ( y  e.  suc  y  -> 
( A. x  e. 
suc  y ph  ->  ch ) )
1917, 18ax-mp 5 . . . . . . . . . . 11  |-  ( A. x  e.  suc  y ph  ->  ch )
20 tfinds.6 . . . . . . . . . . 11  |-  ( y  e.  On  ->  ( ch  ->  th ) )
2119, 20syl5 32 . . . . . . . . . 10  |-  ( y  e.  On  ->  ( A. x  e.  suc  y ph  ->  th )
)
22 raleq 3013 . . . . . . . . . . . 12  |-  ( x  =  suc  y  -> 
( A. z  e.  x  [ z  /  x ] ph  <->  A. z  e.  suc  y [ z  /  x ] ph ) )
23 nfv 1674 . . . . . . . . . . . . . . 15  |-  F/ x ch
2423, 1sbie 2107 . . . . . . . . . . . . . 14  |-  ( [ y  /  x ] ph 
<->  ch )
25 sbequ 2074 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  ( [ y  /  x ] ph  <->  [ z  /  x ] ph ) )
2624, 25syl5bbr 259 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  ( ch 
<->  [ z  /  x ] ph ) )
2726cbvralv 3043 . . . . . . . . . . . 12  |-  ( A. y  e.  x  ch  <->  A. z  e.  x  [
z  /  x ] ph )
28 cbvralsv 3054 . . . . . . . . . . . 12  |-  ( A. x  e.  suc  y ph  <->  A. z  e.  suc  y [ z  /  x ] ph )
2922, 27, 283bitr4g 288 . . . . . . . . . . 11  |-  ( x  =  suc  y  -> 
( A. y  e.  x  ch  <->  A. x  e.  suc  y ph )
)
3029imbi1d 317 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( ( A. y  e.  x  ch  ->  th )  <->  ( A. x  e.  suc  y ph  ->  th ) ) )
3121, 30syl5ibrcom 222 . . . . . . . . 9  |-  ( y  e.  On  ->  (
x  =  suc  y  ->  ( A. y  e.  x  ch  ->  th )
) )
32 tfinds.3 . . . . . . . . . . 11  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
3332biimprd 223 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( th  ->  ph )
)
3433a1i 11 . . . . . . . . 9  |-  ( y  e.  On  ->  (
x  =  suc  y  ->  ( th  ->  ph )
) )
3531, 34syldd 66 . . . . . . . 8  |-  ( y  e.  On  ->  (
x  =  suc  y  ->  ( A. y  e.  x  ch  ->  ph )
) )
3615, 35rexlimi 2930 . . . . . . 7  |-  ( E. y  e.  On  x  =  suc  y  ->  ( A. y  e.  x  ch  ->  ph ) )
3712, 36jaoi 379 . . . . . 6  |-  ( ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y )  -> 
( A. y  e.  x  ch  ->  ph )
)
388, 37syl6 33 . . . . 5  |-  ( x  e.  On  ->  (
( Ord  x  ->  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) )  ->  ( A. y  e.  x  ch  ->  ph ) ) )
395, 38syl5bir 218 . . . 4  |-  ( x  e.  On  ->  ( -.  ( Ord  x  /\  -.  ( x  =  (/)  \/ 
E. y  e.  On  x  =  suc  y ) )  ->  ( A. y  e.  x  ch  ->  ph ) ) )
404, 39syl5bi 217 . . 3  |-  ( x  e.  On  ->  ( -.  Lim  x  ->  ( A. y  e.  x  ch  ->  ph ) ) )
41 tfinds.7 . . 3  |-  ( Lim  x  ->  ( A. y  e.  x  ch  ->  ph ) )
4240, 41pm2.61d2 160 . 2  |-  ( x  e.  On  ->  ( A. y  e.  x  ch  ->  ph ) )
431, 2, 42tfis3 6568 1  |-  ( A  e.  On  ->  ta )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370   [wsb 1702    e. wcel 1758   A.wral 2795   E.wrex 2796   (/)c0 3735   Ord word 4816   Oncon0 4817   Lim wlim 4818   suc csuc 4819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pr 4629  ax-un 6472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3070  df-sbc 3285  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-br 4391  df-opab 4449  df-tr 4484  df-eprel 4730  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823
This theorem is referenced by:  tfindsg  6571  tfindes  6573  tfinds3  6575  oa0r  7078  om0r  7079  om1r  7082  oe1m  7084  oeoalem  7135  r1sdom  8082  r1tr  8084  alephon  8340  alephcard  8341  alephordi  8345  rdgprc  27742
  Copyright terms: Public domain W3C validator