MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfinds Structured version   Unicode version

Theorem tfinds 6667
Description: Principle of Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. Theorem Schema 4 of [Suppes] p. 197. (Contributed by NM, 16-Apr-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypotheses
Ref Expression
tfinds.1  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
tfinds.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
tfinds.3  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
tfinds.4  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
tfinds.5  |-  ps
tfinds.6  |-  ( y  e.  On  ->  ( ch  ->  th ) )
tfinds.7  |-  ( Lim  x  ->  ( A. y  e.  x  ch  ->  ph ) )
Assertion
Ref Expression
tfinds  |-  ( A  e.  On  ->  ta )
Distinct variable groups:    x, y    x, A    ch, x    ta, x    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    ch( y)    th( x, y)    ta( y)    A( y)

Proof of Theorem tfinds
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tfinds.2 . 2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
2 tfinds.4 . 2  |-  ( x  =  A  ->  ( ph 
<->  ta ) )
3 dflim3 6655 . . . . 5  |-  ( Lim  x  <->  ( Ord  x  /\  -.  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) ) )
43notbii 296 . . . 4  |-  ( -. 
Lim  x  <->  -.  ( Ord  x  /\  -.  (
x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) ) )
5 iman 424 . . . . 5  |-  ( ( Ord  x  ->  (
x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) )  <->  -.  ( Ord  x  /\  -.  ( x  =  (/)  \/ 
E. y  e.  On  x  =  suc  y ) ) )
6 eloni 4883 . . . . . . 7  |-  ( x  e.  On  ->  Ord  x )
7 pm2.27 39 . . . . . . 7  |-  ( Ord  x  ->  ( ( Ord  x  ->  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) )  -> 
( x  =  (/)  \/ 
E. y  e.  On  x  =  suc  y ) ) )
86, 7syl 16 . . . . . 6  |-  ( x  e.  On  ->  (
( Ord  x  ->  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) )  ->  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) ) )
9 tfinds.5 . . . . . . . . 9  |-  ps
10 tfinds.1 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ph  <->  ps ) )
119, 10mpbiri 233 . . . . . . . 8  |-  ( x  =  (/)  ->  ph )
1211a1d 25 . . . . . . 7  |-  ( x  =  (/)  ->  ( A. y  e.  x  ch  ->  ph ) )
13 nfra1 2840 . . . . . . . . 9  |-  F/ y A. y  e.  x  ch
14 nfv 1678 . . . . . . . . 9  |-  F/ y
ph
1513, 14nfim 1862 . . . . . . . 8  |-  F/ y ( A. y  e.  x  ch  ->  ph )
16 vex 3111 . . . . . . . . . . . . 13  |-  y  e. 
_V
1716sucid 4952 . . . . . . . . . . . 12  |-  y  e. 
suc  y
181rspcv 3205 . . . . . . . . . . . 12  |-  ( y  e.  suc  y  -> 
( A. x  e. 
suc  y ph  ->  ch ) )
1917, 18ax-mp 5 . . . . . . . . . . 11  |-  ( A. x  e.  suc  y ph  ->  ch )
20 tfinds.6 . . . . . . . . . . 11  |-  ( y  e.  On  ->  ( ch  ->  th ) )
2119, 20syl5 32 . . . . . . . . . 10  |-  ( y  e.  On  ->  ( A. x  e.  suc  y ph  ->  th )
)
22 raleq 3053 . . . . . . . . . . . 12  |-  ( x  =  suc  y  -> 
( A. z  e.  x  [ z  /  x ] ph  <->  A. z  e.  suc  y [ z  /  x ] ph ) )
23 nfv 1678 . . . . . . . . . . . . . . 15  |-  F/ x ch
2423, 1sbie 2118 . . . . . . . . . . . . . 14  |-  ( [ y  /  x ] ph 
<->  ch )
25 sbequ 2085 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  ( [ y  /  x ] ph  <->  [ z  /  x ] ph ) )
2624, 25syl5bbr 259 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  ( ch 
<->  [ z  /  x ] ph ) )
2726cbvralv 3083 . . . . . . . . . . . 12  |-  ( A. y  e.  x  ch  <->  A. z  e.  x  [
z  /  x ] ph )
28 cbvralsv 3094 . . . . . . . . . . . 12  |-  ( A. x  e.  suc  y ph  <->  A. z  e.  suc  y [ z  /  x ] ph )
2922, 27, 283bitr4g 288 . . . . . . . . . . 11  |-  ( x  =  suc  y  -> 
( A. y  e.  x  ch  <->  A. x  e.  suc  y ph )
)
3029imbi1d 317 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( ( A. y  e.  x  ch  ->  th )  <->  ( A. x  e.  suc  y ph  ->  th ) ) )
3121, 30syl5ibrcom 222 . . . . . . . . 9  |-  ( y  e.  On  ->  (
x  =  suc  y  ->  ( A. y  e.  x  ch  ->  th )
) )
32 tfinds.3 . . . . . . . . . . 11  |-  ( x  =  suc  y  -> 
( ph  <->  th ) )
3332biimprd 223 . . . . . . . . . 10  |-  ( x  =  suc  y  -> 
( th  ->  ph )
)
3433a1i 11 . . . . . . . . 9  |-  ( y  e.  On  ->  (
x  =  suc  y  ->  ( th  ->  ph )
) )
3531, 34syldd 66 . . . . . . . 8  |-  ( y  e.  On  ->  (
x  =  suc  y  ->  ( A. y  e.  x  ch  ->  ph )
) )
3615, 35rexlimi 2940 . . . . . . 7  |-  ( E. y  e.  On  x  =  suc  y  ->  ( A. y  e.  x  ch  ->  ph ) )
3712, 36jaoi 379 . . . . . 6  |-  ( ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y )  -> 
( A. y  e.  x  ch  ->  ph )
)
388, 37syl6 33 . . . . 5  |-  ( x  e.  On  ->  (
( Ord  x  ->  ( x  =  (/)  \/  E. y  e.  On  x  =  suc  y ) )  ->  ( A. y  e.  x  ch  ->  ph ) ) )
395, 38syl5bir 218 . . . 4  |-  ( x  e.  On  ->  ( -.  ( Ord  x  /\  -.  ( x  =  (/)  \/ 
E. y  e.  On  x  =  suc  y ) )  ->  ( A. y  e.  x  ch  ->  ph ) ) )
404, 39syl5bi 217 . . 3  |-  ( x  e.  On  ->  ( -.  Lim  x  ->  ( A. y  e.  x  ch  ->  ph ) ) )
41 tfinds.7 . . 3  |-  ( Lim  x  ->  ( A. y  e.  x  ch  ->  ph ) )
4240, 41pm2.61d2 160 . 2  |-  ( x  e.  On  ->  ( A. y  e.  x  ch  ->  ph ) )
431, 2, 42tfis3 6665 1  |-  ( A  e.  On  ->  ta )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1374   [wsb 1706    e. wcel 1762   A.wral 2809   E.wrex 2810   (/)c0 3780   Ord word 4872   Oncon0 4873   Lim wlim 4874   suc csuc 4875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-sbc 3327  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-br 4443  df-opab 4501  df-tr 4536  df-eprel 4786  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879
This theorem is referenced by:  tfindsg  6668  tfindes  6670  tfinds3  6672  oa0r  7180  om0r  7181  om1r  7184  oe1m  7186  oeoalem  7237  r1sdom  8183  r1tr  8185  alephon  8441  alephcard  8442  alephordi  8446  rdgprc  28792
  Copyright terms: Public domain W3C validator