MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfi Unicode version

Theorem tfi 4792
Description: The Principle of Transfinite Induction. Theorem 7.17 of [TakeutiZaring] p. 39. This principle states that if  A is a class of ordinal numbers with the property that every ordinal number included in  A also belongs to  A, then every ordinal number is in  A.

See theorem tfindes 4801 or tfinds 4798 for the version involving basis and induction hypotheses. (Contributed by NM, 18-Feb-2004.)

Assertion
Ref Expression
tfi  |-  ( ( A  C_  On  /\  A. x  e.  On  (
x  C_  A  ->  x  e.  A ) )  ->  A  =  On )
Distinct variable group:    x, A

Proof of Theorem tfi
StepHypRef Expression
1 eldifn 3430 . . . . . . . . 9  |-  ( x  e.  ( On  \  A )  ->  -.  x  e.  A )
21adantl 453 . . . . . . . 8  |-  ( ( ( x  e.  On  ->  ( x  C_  A  ->  x  e.  A ) )  /\  x  e.  ( On  \  A
) )  ->  -.  x  e.  A )
3 eldifi 3429 . . . . . . . . . 10  |-  ( x  e.  ( On  \  A )  ->  x  e.  On )
4 onss 4730 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  x  C_  On )
5 difin0ss 3654 . . . . . . . . . . . . 13  |-  ( ( ( On  \  A
)  i^i  x )  =  (/)  ->  ( x  C_  On  ->  x  C_  A
) )
64, 5syl5com 28 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  (
( ( On  \  A )  i^i  x
)  =  (/)  ->  x  C_  A ) )
76imim1d 71 . . . . . . . . . . 11  |-  ( x  e.  On  ->  (
( x  C_  A  ->  x  e.  A )  ->  ( ( ( On  \  A )  i^i  x )  =  (/)  ->  x  e.  A
) ) )
87a2i 13 . . . . . . . . . 10  |-  ( ( x  e.  On  ->  ( x  C_  A  ->  x  e.  A ) )  ->  ( x  e.  On  ->  ( (
( On  \  A
)  i^i  x )  =  (/)  ->  x  e.  A ) ) )
93, 8syl5 30 . . . . . . . . 9  |-  ( ( x  e.  On  ->  ( x  C_  A  ->  x  e.  A ) )  ->  ( x  e.  ( On  \  A
)  ->  ( (
( On  \  A
)  i^i  x )  =  (/)  ->  x  e.  A ) ) )
109imp 419 . . . . . . . 8  |-  ( ( ( x  e.  On  ->  ( x  C_  A  ->  x  e.  A ) )  /\  x  e.  ( On  \  A
) )  ->  (
( ( On  \  A )  i^i  x
)  =  (/)  ->  x  e.  A ) )
112, 10mtod 170 . . . . . . 7  |-  ( ( ( x  e.  On  ->  ( x  C_  A  ->  x  e.  A ) )  /\  x  e.  ( On  \  A
) )  ->  -.  ( ( On  \  A )  i^i  x
)  =  (/) )
1211ex 424 . . . . . 6  |-  ( ( x  e.  On  ->  ( x  C_  A  ->  x  e.  A ) )  ->  ( x  e.  ( On  \  A
)  ->  -.  (
( On  \  A
)  i^i  x )  =  (/) ) )
1312ralimi2 2738 . . . . 5  |-  ( A. x  e.  On  (
x  C_  A  ->  x  e.  A )  ->  A. x  e.  ( On  \  A )  -.  ( ( On  \  A )  i^i  x
)  =  (/) )
14 ralnex 2676 . . . . 5  |-  ( A. x  e.  ( On  \  A )  -.  (
( On  \  A
)  i^i  x )  =  (/)  <->  -.  E. x  e.  ( On  \  A
) ( ( On 
\  A )  i^i  x )  =  (/) )
1513, 14sylib 189 . . . 4  |-  ( A. x  e.  On  (
x  C_  A  ->  x  e.  A )  ->  -.  E. x  e.  ( On  \  A ) ( ( On  \  A )  i^i  x
)  =  (/) )
16 ssdif0 3646 . . . . . 6  |-  ( On  C_  A  <->  ( On  \  A )  =  (/) )
1716necon3bbii 2598 . . . . 5  |-  ( -.  On  C_  A  <->  ( On  \  A )  =/=  (/) )
18 ordon 4722 . . . . . 6  |-  Ord  On
19 difss 3434 . . . . . 6  |-  ( On 
\  A )  C_  On
20 tz7.5 4562 . . . . . 6  |-  ( ( Ord  On  /\  ( On  \  A )  C_  On  /\  ( On  \  A )  =/=  (/) )  ->  E. x  e.  ( On  \  A ) ( ( On  \  A
)  i^i  x )  =  (/) )
2118, 19, 20mp3an12 1269 . . . . 5  |-  ( ( On  \  A )  =/=  (/)  ->  E. x  e.  ( On  \  A
) ( ( On 
\  A )  i^i  x )  =  (/) )
2217, 21sylbi 188 . . . 4  |-  ( -.  On  C_  A  ->  E. x  e.  ( On 
\  A ) ( ( On  \  A
)  i^i  x )  =  (/) )
2315, 22nsyl2 121 . . 3  |-  ( A. x  e.  On  (
x  C_  A  ->  x  e.  A )  ->  On  C_  A )
2423anim2i 553 . 2  |-  ( ( A  C_  On  /\  A. x  e.  On  (
x  C_  A  ->  x  e.  A ) )  ->  ( A  C_  On  /\  On  C_  A
) )
25 eqss 3323 . 2  |-  ( A  =  On  <->  ( A  C_  On  /\  On  C_  A ) )
2624, 25sylibr 204 1  |-  ( ( A  C_  On  /\  A. x  e.  On  (
x  C_  A  ->  x  e.  A ) )  ->  A  =  On )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667    \ cdif 3277    i^i cin 3279    C_ wss 3280   (/)c0 3588   Ord word 4540   Oncon0 4541
This theorem is referenced by:  tfis  4793  tfisg  25418
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-tr 4263  df-eprel 4454  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545
  Copyright terms: Public domain W3C validator