Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendovalco Structured version   Unicode version

Theorem tendovalco 34085
Description: Value of composition of translations in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendof.h  |-  H  =  ( LHyp `  K
)
tendof.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendof.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
tendovalco  |-  ( ( ( K  e.  V  /\  W  e.  H  /\  S  e.  E
)  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( S `  ( F  o.  G )
)  =  ( ( S `  F )  o.  ( S `  G ) ) )

Proof of Theorem tendovalco
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2420 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
2 tendof.h . . . . 5  |-  H  =  ( LHyp `  K
)
3 tendof.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
4 eqid 2420 . . . . 5  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
5 tendof.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
61, 2, 3, 4, 5istendo 34080 . . . 4  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( S  e.  E  <->  ( S : T --> T  /\  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g ) )  =  ( ( S `  f )  o.  ( S `  g )
)  /\  A. f  e.  T  ( (
( trL `  K
) `  W ) `  ( S `  f
) ) ( le
`  K ) ( ( ( trL `  K
) `  W ) `  f ) ) ) )
7 coeq1 5003 . . . . . . . . 9  |-  ( f  =  F  ->  (
f  o.  g )  =  ( F  o.  g ) )
87fveq2d 5876 . . . . . . . 8  |-  ( f  =  F  ->  ( S `  ( f  o.  g ) )  =  ( S `  ( F  o.  g )
) )
9 fveq2 5872 . . . . . . . . 9  |-  ( f  =  F  ->  ( S `  f )  =  ( S `  F ) )
109coeq1d 5007 . . . . . . . 8  |-  ( f  =  F  ->  (
( S `  f
)  o.  ( S `
 g ) )  =  ( ( S `
 F )  o.  ( S `  g
) ) )
118, 10eqeq12d 2442 . . . . . . 7  |-  ( f  =  F  ->  (
( S `  (
f  o.  g ) )  =  ( ( S `  f )  o.  ( S `  g ) )  <->  ( S `  ( F  o.  g
) )  =  ( ( S `  F
)  o.  ( S `
 g ) ) ) )
12 coeq2 5004 . . . . . . . . 9  |-  ( g  =  G  ->  ( F  o.  g )  =  ( F  o.  G ) )
1312fveq2d 5876 . . . . . . . 8  |-  ( g  =  G  ->  ( S `  ( F  o.  g ) )  =  ( S `  ( F  o.  G )
) )
14 fveq2 5872 . . . . . . . . 9  |-  ( g  =  G  ->  ( S `  g )  =  ( S `  G ) )
1514coeq2d 5008 . . . . . . . 8  |-  ( g  =  G  ->  (
( S `  F
)  o.  ( S `
 g ) )  =  ( ( S `
 F )  o.  ( S `  G
) ) )
1613, 15eqeq12d 2442 . . . . . . 7  |-  ( g  =  G  ->  (
( S `  ( F  o.  g )
)  =  ( ( S `  F )  o.  ( S `  g ) )  <->  ( S `  ( F  o.  G
) )  =  ( ( S `  F
)  o.  ( S `
 G ) ) ) )
1711, 16rspc2v 3188 . . . . . 6  |-  ( ( F  e.  T  /\  G  e.  T )  ->  ( A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g
) )  =  ( ( S `  f
)  o.  ( S `
 g ) )  ->  ( S `  ( F  o.  G
) )  =  ( ( S `  F
)  o.  ( S `
 G ) ) ) )
1817com12 32 . . . . 5  |-  ( A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g ) )  =  ( ( S `  f )  o.  ( S `  g )
)  ->  ( ( F  e.  T  /\  G  e.  T )  ->  ( S `  ( F  o.  G )
)  =  ( ( S `  F )  o.  ( S `  G ) ) ) )
19183ad2ant2 1027 . . . 4  |-  ( ( S : T --> T  /\  A. f  e.  T  A. g  e.  T  ( S `  ( f  o.  g ) )  =  ( ( S `  f )  o.  ( S `  g )
)  /\  A. f  e.  T  ( (
( trL `  K
) `  W ) `  ( S `  f
) ) ( le
`  K ) ( ( ( trL `  K
) `  W ) `  f ) )  -> 
( ( F  e.  T  /\  G  e.  T )  ->  ( S `  ( F  o.  G ) )  =  ( ( S `  F )  o.  ( S `  G )
) ) )
206, 19syl6bi 231 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( S  e.  E  ->  ( ( F  e.  T  /\  G  e.  T )  ->  ( S `  ( F  o.  G ) )  =  ( ( S `  F )  o.  ( S `  G )
) ) ) )
21203impia 1202 . 2  |-  ( ( K  e.  V  /\  W  e.  H  /\  S  e.  E )  ->  ( ( F  e.  T  /\  G  e.  T )  ->  ( S `  ( F  o.  G ) )  =  ( ( S `  F )  o.  ( S `  G )
) ) )
2221imp 430 1  |-  ( ( ( K  e.  V  /\  W  e.  H  /\  S  e.  E
)  /\  ( F  e.  T  /\  G  e.  T ) )  -> 
( S `  ( F  o.  G )
)  =  ( ( S `  F )  o.  ( S `  G ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1867   A.wral 2773   class class class wbr 4417    o. ccom 4849   -->wf 5588   ` cfv 5592   lecple 15157   LHypclh 33302   LTrncltrn 33419   trLctrl 33477   TEndoctendo 34072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-op 4000  df-uni 4214  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-id 4760  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-map 7473  df-tendo 34075
This theorem is referenced by:  tendoco2  34088  tendococl  34092  tendodi1  34104  tendoicl  34116  cdlemi2  34139  tendospdi1  34341
  Copyright terms: Public domain W3C validator