Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendotr Structured version   Unicode version

Theorem tendotr 35501
Description: The trace of the value of a non-zero trace-preserving endomorphism equals the trace of the argument. (Contributed by NM, 11-Aug-2013.)
Hypotheses
Ref Expression
tendotr.b  |-  B  =  ( Base `  K
)
tendotr.h  |-  H  =  ( LHyp `  K
)
tendotr.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendotr.r  |-  R  =  ( ( trL `  K
) `  W )
tendotr.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendotr.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
tendotr  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/= 
O )  /\  F  e.  T )  ->  ( R `  ( U `  F ) )  =  ( R `  F
) )
Distinct variable groups:    B, f    T, f
Allowed substitution hints:    R( f)    U( f)    E( f)    F( f)    H( f)    K( f)    O( f)    W( f)

Proof of Theorem tendotr
StepHypRef Expression
1 simpl1 994 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =  (  _I  |`  B ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2 simpl2l 1044 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =  (  _I  |`  B ) )  ->  U  e.  E
)
3 tendotr.b . . . . . 6  |-  B  =  ( Base `  K
)
4 tendotr.h . . . . . 6  |-  H  =  ( LHyp `  K
)
5 tendotr.e . . . . . 6  |-  E  =  ( ( TEndo `  K
) `  W )
63, 4, 5tendoid 35444 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E
)  ->  ( U `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
71, 2, 6syl2anc 661 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =  (  _I  |`  B ) )  ->  ( U `  (  _I  |`  B ) )  =  (  _I  |`  B ) )
8 simpr 461 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =  (  _I  |`  B ) )  ->  F  =  (  _I  |`  B )
)
98fveq2d 5861 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =  (  _I  |`  B ) )  ->  ( U `  F )  =  ( U `  (  _I  |`  B ) ) )
107, 9, 83eqtr4d 2511 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =  (  _I  |`  B ) )  ->  ( U `  F )  =  F )
1110fveq2d 5861 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =  (  _I  |`  B ) )  ->  ( R `  ( U `  F ) )  =  ( R `
 F ) )
12 simpl1 994 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 simpl2l 1044 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  U  e.  E
)
14 simpl3 996 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  F  e.  T
)
15 eqid 2460 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
16 tendotr.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
17 tendotr.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
1815, 4, 16, 17, 5tendotp 35432 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  F  e.  T
)  ->  ( R `  ( U `  F
) ) ( le
`  K ) ( R `  F ) )
1912, 13, 14, 18syl3anc 1223 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  ( U `  F ) ) ( le `  K ) ( R `
 F ) )
20 simpl1l 1042 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  K  e.  HL )
21 hlatl 34032 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
2220, 21syl 16 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  K  e.  AtLat )
234, 16, 5tendocl 35438 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  F  e.  T
)  ->  ( U `  F )  e.  T
)
2412, 13, 14, 23syl3anc 1223 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( U `  F )  e.  T
)
25 simpl2r 1045 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  U  =/=  O
)
26 simpr 461 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  F  =/=  (  _I  |`  B ) )
27 tendotr.o . . . . . . . . 9  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
283, 4, 16, 5, 27tendoid0 35496 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  ( ( U `  F )  =  (  _I  |`  B )  <-> 
U  =  O ) )
2912, 13, 14, 26, 28syl112anc 1227 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( ( U `
 F )  =  (  _I  |`  B )  <-> 
U  =  O ) )
3029necon3bid 2718 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( ( U `
 F )  =/=  (  _I  |`  B )  <-> 
U  =/=  O ) )
3125, 30mpbird 232 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( U `  F )  =/=  (  _I  |`  B ) )
32 eqid 2460 . . . . . 6  |-  ( Atoms `  K )  =  (
Atoms `  K )
333, 32, 4, 16, 17trlnidat 34844 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U `  F )  e.  T  /\  ( U `  F
)  =/=  (  _I  |`  B ) )  -> 
( R `  ( U `  F )
)  e.  ( Atoms `  K ) )
3412, 24, 31, 33syl3anc 1223 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  ( U `  F ) )  e.  ( Atoms `  K ) )
353, 32, 4, 16, 17trlnidat 34844 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  F )  e.  (
Atoms `  K ) )
3612, 14, 26, 35syl3anc 1223 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  F )  e.  (
Atoms `  K ) )
3715, 32atcmp 33983 . . . 4  |-  ( ( K  e.  AtLat  /\  ( R `  ( U `  F ) )  e.  ( Atoms `  K )  /\  ( R `  F
)  e.  ( Atoms `  K ) )  -> 
( ( R `  ( U `  F ) ) ( le `  K ) ( R `
 F )  <->  ( R `  ( U `  F
) )  =  ( R `  F ) ) )
3822, 34, 36, 37syl3anc 1223 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( ( R `
 ( U `  F ) ) ( le `  K ) ( R `  F
)  <->  ( R `  ( U `  F ) )  =  ( R `
 F ) ) )
3919, 38mpbid 210 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/=  O )  /\  F  e.  T )  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  ( U `  F ) )  =  ( R `
 F ) )
4011, 39pm2.61dane 2778 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  U  =/= 
O )  /\  F  e.  T )  ->  ( R `  ( U `  F ) )  =  ( R `  F
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2655   class class class wbr 4440    |-> cmpt 4498    _I cid 4783    |` cres 4994   ` cfv 5579   Basecbs 14479   lecple 14551   Atomscatm 33935   AtLatcal 33936   HLchlt 34022   LHypclh 34655   LTrncltrn 34772   trLctrl 34829   TEndoctendo 35423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-riotaBAD 33631
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-1st 6774  df-2nd 6775  df-undef 6992  df-map 7412  df-poset 15422  df-plt 15434  df-lub 15450  df-glb 15451  df-join 15452  df-meet 15453  df-p0 15515  df-p1 15516  df-lat 15522  df-clat 15584  df-oposet 33848  df-ol 33850  df-oml 33851  df-covers 33938  df-ats 33939  df-atl 33970  df-cvlat 33994  df-hlat 34023  df-llines 34169  df-lplanes 34170  df-lvols 34171  df-lines 34172  df-psubsp 34174  df-pmap 34175  df-padd 34467  df-lhyp 34659  df-laut 34660  df-ldil 34775  df-ltrn 34776  df-trl 34830  df-tendo 35426
This theorem is referenced by:  cdleml6  35652
  Copyright terms: Public domain W3C validator