Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendospcanN Unicode version

Theorem tendospcanN 31506
Description: Cancellation law for trace-perserving endomorphism values (used as scalar product). (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
tendospcan.b  |-  B  =  ( Base `  K
)
tendospcan.h  |-  H  =  ( LHyp `  K
)
tendospcan.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendospcan.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendospcan.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
tendospcanN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  S  =/= 
O )  /\  ( F  e.  T  /\  G  e.  T )
)  ->  ( ( S `  F )  =  ( S `  G )  <->  F  =  G ) )
Distinct variable groups:    B, f    T, f
Allowed substitution hints:    S( f)    E( f)    F( f)    G( f)    H( f)    K( f)    O( f)    W( f)

Proof of Theorem tendospcanN
StepHypRef Expression
1 tendospcan.h . . . . . . . . . . . . . . . . . 18  |-  H  =  ( LHyp `  K
)
2 tendospcan.t . . . . . . . . . . . . . . . . . 18  |-  T  =  ( ( LTrn `  K
) `  W )
3 tendospcan.e . . . . . . . . . . . . . . . . . 18  |-  E  =  ( ( TEndo `  K
) `  W )
41, 2, 3tendocnv 31504 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  G  e.  T
)  ->  `' ( S `  G )  =  ( S `  `' G ) )
543adant3l 1180 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  `' ( S `  G )  =  ( S `  `' G ) )
65coeq2d 4994 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  (
( S `  F
)  o.  `' ( S `  G ) )  =  ( ( S `  F )  o.  ( S `  `' G ) ) )
7 simp1 957 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
8 simp2 958 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  S  e.  E )
9 simp3l 985 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  F  e.  T )
10 simp3r 986 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  G  e.  T )
111, 2ltrncnv 30628 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  `' G  e.  T )
127, 10, 11syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  `' G  e.  T )
131, 2, 3tendospdi1 31503 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  F  e.  T  /\  `' G  e.  T ) )  -> 
( S `  ( F  o.  `' G
) )  =  ( ( S `  F
)  o.  ( S `
 `' G ) ) )
147, 8, 9, 12, 13syl13anc 1186 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  ( S `  ( F  o.  `' G ) )  =  ( ( S `  F )  o.  ( S `  `' G
) ) )
156, 14eqtr4d 2439 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  (
( S `  F
)  o.  `' ( S `  G ) )  =  ( S `
 ( F  o.  `' G ) ) )
1615adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( ( S `
 F )  o.  `' ( S `  G ) )  =  ( S `  ( F  o.  `' G
) ) )
1716eqeq1d 2412 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( ( ( S `  F )  o.  `' ( S `
 G ) )  =  (  _I  |`  B )  <-> 
( S `  ( F  o.  `' G
) )  =  (  _I  |`  B )
) )
18 simpl1 960 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
19 simpl2 961 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  S  e.  E
)
20 simpl3l 1012 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  F  e.  T
)
211, 2, 3tendocl 31249 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( S `  F )  e.  T
)
2218, 19, 20, 21syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( S `  F )  e.  T
)
23 simpl3r 1013 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  G  e.  T
)
241, 2, 3tendocl 31249 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  G  e.  T
)  ->  ( S `  G )  e.  T
)
2518, 19, 23, 24syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( S `  G )  e.  T
)
26 tendospcan.b . . . . . . . . . . . . . 14  |-  B  =  ( Base `  K
)
2726, 1, 2ltrncoidN 30610 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S `  F )  e.  T  /\  ( S `  G
)  e.  T )  ->  ( ( ( S `  F )  o.  `' ( S `
 G ) )  =  (  _I  |`  B )  <-> 
( S `  F
)  =  ( S `
 G ) ) )
2818, 22, 25, 27syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( ( ( S `  F )  o.  `' ( S `
 G ) )  =  (  _I  |`  B )  <-> 
( S `  F
)  =  ( S `
 G ) ) )
2918, 23, 11syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  `' G  e.  T )
301, 2ltrnco 31201 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  `' G  e.  T
)  ->  ( F  o.  `' G )  e.  T
)
3118, 20, 29, 30syl3anc 1184 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( F  o.  `' G )  e.  T
)
32 simpr 448 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( F  o.  `' G )  =/=  (  _I  |`  B ) )
33 tendospcan.o . . . . . . . . . . . . . 14  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
3426, 1, 2, 3, 33tendoid0 31307 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( ( F  o.  `' G )  e.  T  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) ) )  ->  ( ( S `  ( F  o.  `' G ) )  =  (  _I  |`  B )  <-> 
S  =  O ) )
3518, 19, 31, 32, 34syl112anc 1188 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( ( S `
 ( F  o.  `' G ) )  =  (  _I  |`  B )  <-> 
S  =  O ) )
3617, 28, 353bitr3d 275 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( ( S `
 F )  =  ( S `  G
)  <->  S  =  O
) )
3736biimpd 199 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( ( S `
 F )  =  ( S `  G
)  ->  S  =  O ) )
3837impancom 428 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( S `  F )  =  ( S `  G ) )  ->  ( ( F  o.  `' G
)  =/=  (  _I  |`  B )  ->  S  =  O ) )
3938necon1d 2636 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( S `  F )  =  ( S `  G ) )  ->  ( S  =/=  O  ->  ( F  o.  `' G )  =  (  _I  |`  B )
) )
40 simpl1 960 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( S `  F )  =  ( S `  G ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
41 simpl3l 1012 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( S `  F )  =  ( S `  G ) )  ->  F  e.  T )
42 simpl3r 1013 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( S `  F )  =  ( S `  G ) )  ->  G  e.  T )
4326, 1, 2ltrncoidN 30610 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( F  o.  `' G
)  =  (  _I  |`  B )  <->  F  =  G ) )
4440, 41, 42, 43syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( S `  F )  =  ( S `  G ) )  ->  ( ( F  o.  `' G
)  =  (  _I  |`  B )  <->  F  =  G ) )
4539, 44sylibd 206 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( S `  F )  =  ( S `  G ) )  ->  ( S  =/=  O  ->  F  =  G ) )
46453exp1 1169 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( S  e.  E  ->  ( ( F  e.  T  /\  G  e.  T )  ->  (
( S `  F
)  =  ( S `
 G )  -> 
( S  =/=  O  ->  F  =  G ) ) ) ) )
4746com24 83 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( S `  F )  =  ( S `  G )  ->  ( ( F  e.  T  /\  G  e.  T )  ->  ( S  e.  E  ->  ( S  =/=  O  ->  F  =  G )
) ) ) )
4847imp5a 582 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( S `  F )  =  ( S `  G )  ->  ( ( F  e.  T  /\  G  e.  T )  ->  (
( S  e.  E  /\  S  =/=  O
)  ->  F  =  G ) ) ) )
4948com24 83 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( S  e.  E  /\  S  =/= 
O )  ->  (
( F  e.  T  /\  G  e.  T
)  ->  ( ( S `  F )  =  ( S `  G )  ->  F  =  G ) ) ) )
50493imp 1147 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  S  =/= 
O )  /\  ( F  e.  T  /\  G  e.  T )
)  ->  ( ( S `  F )  =  ( S `  G )  ->  F  =  G ) )
51 fveq2 5687 . 2  |-  ( F  =  G  ->  ( S `  F )  =  ( S `  G ) )
5250, 51impbid1 195 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  S  =/= 
O )  /\  ( F  e.  T  /\  G  e.  T )
)  ->  ( ( S `  F )  =  ( S `  G )  <->  F  =  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567    e. cmpt 4226    _I cid 4453   `'ccnv 4836    |` cres 4839    o. ccom 4841   ` cfv 5413   Basecbs 13424   HLchlt 29833   LHypclh 30466   LTrncltrn 30583   TEndoctendo 31234
This theorem is referenced by:  dihmeetlem13N  31802
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-map 6979  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641  df-tendo 31237
  Copyright terms: Public domain W3C validator