Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendospcanN Structured version   Unicode version

Theorem tendospcanN 34554
Description: Cancellation law for trace-perserving endomorphism values (used as scalar product). (Contributed by NM, 7-Apr-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
tendospcan.b  |-  B  =  ( Base `  K
)
tendospcan.h  |-  H  =  ( LHyp `  K
)
tendospcan.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendospcan.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendospcan.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
tendospcanN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  S  =/= 
O )  /\  ( F  e.  T  /\  G  e.  T )
)  ->  ( ( S `  F )  =  ( S `  G )  <->  F  =  G ) )
Distinct variable groups:    B, f    T, f
Allowed substitution hints:    S( f)    E( f)    F( f)    G( f)    H( f)    K( f)    O( f)    W( f)

Proof of Theorem tendospcanN
StepHypRef Expression
1 tendospcan.h . . . . . . . . . . . . . . . . . 18  |-  H  =  ( LHyp `  K
)
2 tendospcan.t . . . . . . . . . . . . . . . . . 18  |-  T  =  ( ( LTrn `  K
) `  W )
3 tendospcan.e . . . . . . . . . . . . . . . . . 18  |-  E  =  ( ( TEndo `  K
) `  W )
41, 2, 3tendocnv 34552 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  G  e.  T
)  ->  `' ( S `  G )  =  ( S `  `' G ) )
543adant3l 1261 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  `' ( S `  G )  =  ( S `  `' G ) )
65coeq2d 5014 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  (
( S `  F
)  o.  `' ( S `  G ) )  =  ( ( S `  F )  o.  ( S `  `' G ) ) )
7 simp1 1006 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
8 simp2 1007 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  S  e.  E )
9 simp3l 1034 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  F  e.  T )
10 simp3r 1035 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  G  e.  T )
111, 2ltrncnv 33674 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  G  e.  T
)  ->  `' G  e.  T )
127, 10, 11syl2anc 666 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  `' G  e.  T )
131, 2, 3tendospdi1 34551 . . . . . . . . . . . . . . . 16  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  F  e.  T  /\  `' G  e.  T ) )  -> 
( S `  ( F  o.  `' G
) )  =  ( ( S `  F
)  o.  ( S `
 `' G ) ) )
147, 8, 9, 12, 13syl13anc 1267 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  ( S `  ( F  o.  `' G ) )  =  ( ( S `  F )  o.  ( S `  `' G
) ) )
156, 14eqtr4d 2467 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T
) )  ->  (
( S `  F
)  o.  `' ( S `  G ) )  =  ( S `
 ( F  o.  `' G ) ) )
1615adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( ( S `
 F )  o.  `' ( S `  G ) )  =  ( S `  ( F  o.  `' G
) ) )
1716eqeq1d 2425 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( ( ( S `  F )  o.  `' ( S `
 G ) )  =  (  _I  |`  B )  <-> 
( S `  ( F  o.  `' G
) )  =  (  _I  |`  B )
) )
18 simpl1 1009 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
19 simpl2 1010 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  S  e.  E
)
20 simpl3l 1061 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  F  e.  T
)
211, 2, 3tendocl 34297 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( S `  F )  e.  T
)
2218, 19, 20, 21syl3anc 1265 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( S `  F )  e.  T
)
23 simpl3r 1062 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  G  e.  T
)
241, 2, 3tendocl 34297 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  G  e.  T
)  ->  ( S `  G )  e.  T
)
2518, 19, 23, 24syl3anc 1265 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( S `  G )  e.  T
)
26 tendospcan.b . . . . . . . . . . . . . 14  |-  B  =  ( Base `  K
)
2726, 1, 2ltrncoidN 33656 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S `  F )  e.  T  /\  ( S `  G
)  e.  T )  ->  ( ( ( S `  F )  o.  `' ( S `
 G ) )  =  (  _I  |`  B )  <-> 
( S `  F
)  =  ( S `
 G ) ) )
2818, 22, 25, 27syl3anc 1265 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( ( ( S `  F )  o.  `' ( S `
 G ) )  =  (  _I  |`  B )  <-> 
( S `  F
)  =  ( S `
 G ) ) )
2918, 23, 11syl2anc 666 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  `' G  e.  T )
301, 2ltrnco 34249 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  `' G  e.  T
)  ->  ( F  o.  `' G )  e.  T
)
3118, 20, 29, 30syl3anc 1265 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( F  o.  `' G )  e.  T
)
32 simpr 463 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( F  o.  `' G )  =/=  (  _I  |`  B ) )
33 tendospcan.o . . . . . . . . . . . . . 14  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
3426, 1, 2, 3, 33tendoid0 34355 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( ( F  o.  `' G )  e.  T  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) ) )  ->  ( ( S `  ( F  o.  `' G ) )  =  (  _I  |`  B )  <-> 
S  =  O ) )
3518, 19, 31, 32, 34syl112anc 1269 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( ( S `
 ( F  o.  `' G ) )  =  (  _I  |`  B )  <-> 
S  =  O ) )
3617, 28, 353bitr3d 287 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( ( S `
 F )  =  ( S `  G
)  <->  S  =  O
) )
3736biimpd 211 . . . . . . . . . 10  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( F  o.  `' G )  =/=  (  _I  |`  B ) )  ->  ( ( S `
 F )  =  ( S `  G
)  ->  S  =  O ) )
3837impancom 442 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( S `  F )  =  ( S `  G ) )  ->  ( ( F  o.  `' G
)  =/=  (  _I  |`  B )  ->  S  =  O ) )
3938necon1d 2650 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( S `  F )  =  ( S `  G ) )  ->  ( S  =/=  O  ->  ( F  o.  `' G )  =  (  _I  |`  B )
) )
40 simpl1 1009 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( S `  F )  =  ( S `  G ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
41 simpl3l 1061 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( S `  F )  =  ( S `  G ) )  ->  F  e.  T )
42 simpl3r 1062 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( S `  F )  =  ( S `  G ) )  ->  G  e.  T )
4326, 1, 2ltrncoidN 33656 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  G  e.  T
)  ->  ( ( F  o.  `' G
)  =  (  _I  |`  B )  <->  F  =  G ) )
4440, 41, 42, 43syl3anc 1265 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( S `  F )  =  ( S `  G ) )  ->  ( ( F  o.  `' G
)  =  (  _I  |`  B )  <->  F  =  G ) )
4539, 44sylibd 218 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( F  e.  T  /\  G  e.  T )
)  /\  ( S `  F )  =  ( S `  G ) )  ->  ( S  =/=  O  ->  F  =  G ) )
46453exp1 1222 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( S  e.  E  ->  ( ( F  e.  T  /\  G  e.  T )  ->  (
( S `  F
)  =  ( S `
 G )  -> 
( S  =/=  O  ->  F  =  G ) ) ) ) )
4746com24 91 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( S `  F )  =  ( S `  G )  ->  ( ( F  e.  T  /\  G  e.  T )  ->  ( S  e.  E  ->  ( S  =/=  O  ->  F  =  G )
) ) ) )
4847imp5a 602 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( S `  F )  =  ( S `  G )  ->  ( ( F  e.  T  /\  G  e.  T )  ->  (
( S  e.  E  /\  S  =/=  O
)  ->  F  =  G ) ) ) )
4948com24 91 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( ( S  e.  E  /\  S  =/= 
O )  ->  (
( F  e.  T  /\  G  e.  T
)  ->  ( ( S `  F )  =  ( S `  G )  ->  F  =  G ) ) ) )
50493imp 1200 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  S  =/= 
O )  /\  ( F  e.  T  /\  G  e.  T )
)  ->  ( ( S `  F )  =  ( S `  G )  ->  F  =  G ) )
51 fveq2 5879 . 2  |-  ( F  =  G  ->  ( S `  F )  =  ( S `  G ) )
5250, 51impbid1 207 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  S  =/= 
O )  /\  ( F  e.  T  /\  G  e.  T )
)  ->  ( ( S `  F )  =  ( S `  G )  <->  F  =  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869    =/= wne 2619    |-> cmpt 4480    _I cid 4761   `'ccnv 4850    |` cres 4853    o. ccom 4855   ` cfv 5599   Basecbs 15114   HLchlt 32879   LHypclh 33512   LTrncltrn 33629   TEndoctendo 34282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-riotaBAD 32488
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-fal 1444  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-op 4004  df-uni 4218  df-iun 4299  df-iin 4300  df-br 4422  df-opab 4481  df-mpt 4482  df-id 4766  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-1st 6805  df-2nd 6806  df-undef 7026  df-map 7480  df-preset 16166  df-poset 16184  df-plt 16197  df-lub 16213  df-glb 16214  df-join 16215  df-meet 16216  df-p0 16278  df-p1 16279  df-lat 16285  df-clat 16347  df-oposet 32705  df-ol 32707  df-oml 32708  df-covers 32795  df-ats 32796  df-atl 32827  df-cvlat 32851  df-hlat 32880  df-llines 33026  df-lplanes 33027  df-lvols 33028  df-lines 33029  df-psubsp 33031  df-pmap 33032  df-padd 33324  df-lhyp 33516  df-laut 33517  df-ldil 33632  df-ltrn 33633  df-trl 33688  df-tendo 34285
This theorem is referenced by:  dihmeetlem13N  34850
  Copyright terms: Public domain W3C validator