Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoset Unicode version

Theorem tendoset 31241
Description: The set of trace-preserving endomorphisms on the set of translations for a fiducial co-atom  W. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l  |-  .<_  =  ( le `  K )
tendoset.h  |-  H  =  ( LHyp `  K
)
tendoset.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoset.r  |-  R  =  ( ( trL `  K
) `  W )
tendoset.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
tendoset  |-  ( ( K  e.  V  /\  W  e.  H )  ->  E  =  { s  |  ( s : T --> T  /\  A. f  e.  T  A. g  e.  T  (
s `  ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  T  ( R `  ( s `  f
) )  .<_  ( R `
 f ) ) } )
Distinct variable groups:    f, s,
g, K    T, f,
g, s    W, s,
f, g
Allowed substitution hints:    R( f, g, s)    E( f, g, s)    H( f, g, s)    .<_ ( f, g, s)    V( f, g, s)

Proof of Theorem tendoset
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 tendoset.e . 2  |-  E  =  ( ( TEndo `  K
) `  W )
2 tendoset.l . . . . 5  |-  .<_  =  ( le `  K )
3 tendoset.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3tendofset 31240 . . . 4  |-  ( K  e.  V  ->  ( TEndo `  K )  =  ( w  e.  H  |->  { s  |  ( s : ( (
LTrn `  K ) `  w ) --> ( (
LTrn `  K ) `  w )  /\  A. f  e.  ( ( LTrn `  K ) `  w ) A. g  e.  ( ( LTrn `  K
) `  w )
( s `  (
f  o.  g ) )  =  ( ( s `  f )  o.  ( s `  g ) )  /\  A. f  e.  ( (
LTrn `  K ) `  w ) ( ( ( trL `  K
) `  w ) `  ( s `  f
) )  .<_  ( ( ( trL `  K
) `  w ) `  f ) ) } ) )
54fveq1d 5689 . . 3  |-  ( K  e.  V  ->  (
( TEndo `  K ) `  W )  =  ( ( w  e.  H  |->  { s  |  ( s : ( (
LTrn `  K ) `  w ) --> ( (
LTrn `  K ) `  w )  /\  A. f  e.  ( ( LTrn `  K ) `  w ) A. g  e.  ( ( LTrn `  K
) `  w )
( s `  (
f  o.  g ) )  =  ( ( s `  f )  o.  ( s `  g ) )  /\  A. f  e.  ( (
LTrn `  K ) `  w ) ( ( ( trL `  K
) `  w ) `  ( s `  f
) )  .<_  ( ( ( trL `  K
) `  w ) `  f ) ) } ) `  W ) )
6 fveq2 5687 . . . . . . . 8  |-  ( w  =  W  ->  (
( LTrn `  K ) `  w )  =  ( ( LTrn `  K
) `  W )
)
76, 6feq23d 5547 . . . . . . 7  |-  ( w  =  W  ->  (
s : ( (
LTrn `  K ) `  w ) --> ( (
LTrn `  K ) `  w )  <->  s :
( ( LTrn `  K
) `  W ) --> ( ( LTrn `  K
) `  W )
) )
86raleqdv 2870 . . . . . . . 8  |-  ( w  =  W  ->  ( A. g  e.  (
( LTrn `  K ) `  w ) ( s `
 ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  <->  A. g  e.  ( ( LTrn `  K
) `  W )
( s `  (
f  o.  g ) )  =  ( ( s `  f )  o.  ( s `  g ) ) ) )
96, 8raleqbidv 2876 . . . . . . 7  |-  ( w  =  W  ->  ( A. f  e.  (
( LTrn `  K ) `  w ) A. g  e.  ( ( LTrn `  K
) `  w )
( s `  (
f  o.  g ) )  =  ( ( s `  f )  o.  ( s `  g ) )  <->  A. f  e.  ( ( LTrn `  K
) `  W ) A. g  e.  (
( LTrn `  K ) `  W ) ( s `
 ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
) ) )
10 fveq2 5687 . . . . . . . . . . 11  |-  ( w  =  W  ->  (
( trL `  K
) `  w )  =  ( ( trL `  K ) `  W
) )
11 tendoset.r . . . . . . . . . . 11  |-  R  =  ( ( trL `  K
) `  W )
1210, 11syl6eqr 2454 . . . . . . . . . 10  |-  ( w  =  W  ->  (
( trL `  K
) `  w )  =  R )
1312fveq1d 5689 . . . . . . . . 9  |-  ( w  =  W  ->  (
( ( trL `  K
) `  w ) `  ( s `  f
) )  =  ( R `  ( s `
 f ) ) )
1412fveq1d 5689 . . . . . . . . 9  |-  ( w  =  W  ->  (
( ( trL `  K
) `  w ) `  f )  =  ( R `  f ) )
1513, 14breq12d 4185 . . . . . . . 8  |-  ( w  =  W  ->  (
( ( ( trL `  K ) `  w
) `  ( s `  f ) )  .<_  ( ( ( trL `  K ) `  w
) `  f )  <->  ( R `  ( s `
 f ) ) 
.<_  ( R `  f
) ) )
166, 15raleqbidv 2876 . . . . . . 7  |-  ( w  =  W  ->  ( A. f  e.  (
( LTrn `  K ) `  w ) ( ( ( trL `  K
) `  w ) `  ( s `  f
) )  .<_  ( ( ( trL `  K
) `  w ) `  f )  <->  A. f  e.  ( ( LTrn `  K
) `  W )
( R `  (
s `  f )
)  .<_  ( R `  f ) ) )
177, 9, 163anbi123d 1254 . . . . . 6  |-  ( w  =  W  ->  (
( s : ( ( LTrn `  K
) `  w ) --> ( ( LTrn `  K
) `  w )  /\  A. f  e.  ( ( LTrn `  K
) `  w ) A. g  e.  (
( LTrn `  K ) `  w ) ( s `
 ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  ( ( LTrn `  K
) `  w )
( ( ( trL `  K ) `  w
) `  ( s `  f ) )  .<_  ( ( ( trL `  K ) `  w
) `  f )
)  <->  ( s : ( ( LTrn `  K
) `  W ) --> ( ( LTrn `  K
) `  W )  /\  A. f  e.  ( ( LTrn `  K
) `  W ) A. g  e.  (
( LTrn `  K ) `  W ) ( s `
 ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  ( ( LTrn `  K
) `  W )
( R `  (
s `  f )
)  .<_  ( R `  f ) ) ) )
1817abbidv 2518 . . . . 5  |-  ( w  =  W  ->  { s  |  ( s : ( ( LTrn `  K
) `  w ) --> ( ( LTrn `  K
) `  w )  /\  A. f  e.  ( ( LTrn `  K
) `  w ) A. g  e.  (
( LTrn `  K ) `  w ) ( s `
 ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  ( ( LTrn `  K
) `  w )
( ( ( trL `  K ) `  w
) `  ( s `  f ) )  .<_  ( ( ( trL `  K ) `  w
) `  f )
) }  =  {
s  |  ( s : ( ( LTrn `  K ) `  W
) --> ( ( LTrn `  K ) `  W
)  /\  A. f  e.  ( ( LTrn `  K
) `  W ) A. g  e.  (
( LTrn `  K ) `  W ) ( s `
 ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  ( ( LTrn `  K
) `  W )
( R `  (
s `  f )
)  .<_  ( R `  f ) ) } )
19 eqid 2404 . . . . 5  |-  ( w  e.  H  |->  { s  |  ( s : ( ( LTrn `  K
) `  w ) --> ( ( LTrn `  K
) `  w )  /\  A. f  e.  ( ( LTrn `  K
) `  w ) A. g  e.  (
( LTrn `  K ) `  w ) ( s `
 ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  ( ( LTrn `  K
) `  w )
( ( ( trL `  K ) `  w
) `  ( s `  f ) )  .<_  ( ( ( trL `  K ) `  w
) `  f )
) } )  =  ( w  e.  H  |->  { s  |  ( s : ( (
LTrn `  K ) `  w ) --> ( (
LTrn `  K ) `  w )  /\  A. f  e.  ( ( LTrn `  K ) `  w ) A. g  e.  ( ( LTrn `  K
) `  w )
( s `  (
f  o.  g ) )  =  ( ( s `  f )  o.  ( s `  g ) )  /\  A. f  e.  ( (
LTrn `  K ) `  w ) ( ( ( trL `  K
) `  w ) `  ( s `  f
) )  .<_  ( ( ( trL `  K
) `  w ) `  f ) ) } )
20 fvex 5701 . . . . . . . 8  |-  ( (
LTrn `  K ) `  W )  e.  _V
2120, 20mapval 6989 . . . . . . 7  |-  ( ( ( LTrn `  K
) `  W )  ^m  ( ( LTrn `  K
) `  W )
)  =  { s  |  s : ( ( LTrn `  K
) `  W ) --> ( ( LTrn `  K
) `  W ) }
22 ovex 6065 . . . . . . 7  |-  ( ( ( LTrn `  K
) `  W )  ^m  ( ( LTrn `  K
) `  W )
)  e.  _V
2321, 22eqeltrri 2475 . . . . . 6  |-  { s  |  s : ( ( LTrn `  K
) `  W ) --> ( ( LTrn `  K
) `  W ) }  e.  _V
24 simp1 957 . . . . . . 7  |-  ( ( s : ( (
LTrn `  K ) `  W ) --> ( (
LTrn `  K ) `  W )  /\  A. f  e.  ( ( LTrn `  K ) `  W ) A. g  e.  ( ( LTrn `  K
) `  W )
( s `  (
f  o.  g ) )  =  ( ( s `  f )  o.  ( s `  g ) )  /\  A. f  e.  ( (
LTrn `  K ) `  W ) ( R `
 ( s `  f ) )  .<_  ( R `  f ) )  ->  s :
( ( LTrn `  K
) `  W ) --> ( ( LTrn `  K
) `  W )
)
2524ss2abi 3375 . . . . . 6  |-  { s  |  ( s : ( ( LTrn `  K
) `  W ) --> ( ( LTrn `  K
) `  W )  /\  A. f  e.  ( ( LTrn `  K
) `  W ) A. g  e.  (
( LTrn `  K ) `  W ) ( s `
 ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  ( ( LTrn `  K
) `  W )
( R `  (
s `  f )
)  .<_  ( R `  f ) ) } 
C_  { s  |  s : ( (
LTrn `  K ) `  W ) --> ( (
LTrn `  K ) `  W ) }
2623, 25ssexi 4308 . . . . 5  |-  { s  |  ( s : ( ( LTrn `  K
) `  W ) --> ( ( LTrn `  K
) `  W )  /\  A. f  e.  ( ( LTrn `  K
) `  W ) A. g  e.  (
( LTrn `  K ) `  W ) ( s `
 ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  ( ( LTrn `  K
) `  W )
( R `  (
s `  f )
)  .<_  ( R `  f ) ) }  e.  _V
2718, 19, 26fvmpt 5765 . . . 4  |-  ( W  e.  H  ->  (
( w  e.  H  |->  { s  |  ( s : ( (
LTrn `  K ) `  w ) --> ( (
LTrn `  K ) `  w )  /\  A. f  e.  ( ( LTrn `  K ) `  w ) A. g  e.  ( ( LTrn `  K
) `  w )
( s `  (
f  o.  g ) )  =  ( ( s `  f )  o.  ( s `  g ) )  /\  A. f  e.  ( (
LTrn `  K ) `  w ) ( ( ( trL `  K
) `  w ) `  ( s `  f
) )  .<_  ( ( ( trL `  K
) `  w ) `  f ) ) } ) `  W )  =  { s  |  ( s : ( ( LTrn `  K
) `  W ) --> ( ( LTrn `  K
) `  W )  /\  A. f  e.  ( ( LTrn `  K
) `  W ) A. g  e.  (
( LTrn `  K ) `  W ) ( s `
 ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  ( ( LTrn `  K
) `  W )
( R `  (
s `  f )
)  .<_  ( R `  f ) ) } )
28 tendoset.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
2928, 28feq23i 5546 . . . . . 6  |-  ( s : T --> T  <->  s :
( ( LTrn `  K
) `  W ) --> ( ( LTrn `  K
) `  W )
)
3028raleqi 2868 . . . . . . 7  |-  ( A. g  e.  T  (
s `  ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  <->  A. g  e.  ( ( LTrn `  K
) `  W )
( s `  (
f  o.  g ) )  =  ( ( s `  f )  o.  ( s `  g ) ) )
3128, 30raleqbii 2696 . . . . . 6  |-  ( A. f  e.  T  A. g  e.  T  (
s `  ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  <->  A. f  e.  ( ( LTrn `  K
) `  W ) A. g  e.  (
( LTrn `  K ) `  W ) ( s `
 ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
) )
3228raleqi 2868 . . . . . 6  |-  ( A. f  e.  T  ( R `  ( s `  f ) )  .<_  ( R `  f )  <->  A. f  e.  (
( LTrn `  K ) `  W ) ( R `
 ( s `  f ) )  .<_  ( R `  f ) )
3329, 31, 323anbi123i 1142 . . . . 5  |-  ( ( s : T --> T  /\  A. f  e.  T  A. g  e.  T  (
s `  ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  T  ( R `  ( s `  f
) )  .<_  ( R `
 f ) )  <-> 
( s : ( ( LTrn `  K
) `  W ) --> ( ( LTrn `  K
) `  W )  /\  A. f  e.  ( ( LTrn `  K
) `  W ) A. g  e.  (
( LTrn `  K ) `  W ) ( s `
 ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  ( ( LTrn `  K
) `  W )
( R `  (
s `  f )
)  .<_  ( R `  f ) ) )
3433abbii 2516 . . . 4  |-  { s  |  ( s : T --> T  /\  A. f  e.  T  A. g  e.  T  (
s `  ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  T  ( R `  ( s `  f
) )  .<_  ( R `
 f ) ) }  =  { s  |  ( s : ( ( LTrn `  K
) `  W ) --> ( ( LTrn `  K
) `  W )  /\  A. f  e.  ( ( LTrn `  K
) `  W ) A. g  e.  (
( LTrn `  K ) `  W ) ( s `
 ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  ( ( LTrn `  K
) `  W )
( R `  (
s `  f )
)  .<_  ( R `  f ) ) }
3527, 34syl6eqr 2454 . . 3  |-  ( W  e.  H  ->  (
( w  e.  H  |->  { s  |  ( s : ( (
LTrn `  K ) `  w ) --> ( (
LTrn `  K ) `  w )  /\  A. f  e.  ( ( LTrn `  K ) `  w ) A. g  e.  ( ( LTrn `  K
) `  w )
( s `  (
f  o.  g ) )  =  ( ( s `  f )  o.  ( s `  g ) )  /\  A. f  e.  ( (
LTrn `  K ) `  w ) ( ( ( trL `  K
) `  w ) `  ( s `  f
) )  .<_  ( ( ( trL `  K
) `  w ) `  f ) ) } ) `  W )  =  { s  |  ( s : T --> T  /\  A. f  e.  T  A. g  e.  T  ( s `  ( f  o.  g
) )  =  ( ( s `  f
)  o.  ( s `
 g ) )  /\  A. f  e.  T  ( R `  ( s `  f
) )  .<_  ( R `
 f ) ) } )
365, 35sylan9eq 2456 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( ( TEndo `  K
) `  W )  =  { s  |  ( s : T --> T  /\  A. f  e.  T  A. g  e.  T  (
s `  ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  T  ( R `  ( s `  f
) )  .<_  ( R `
 f ) ) } )
371, 36syl5eq 2448 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  E  =  { s  |  ( s : T --> T  /\  A. f  e.  T  A. g  e.  T  (
s `  ( f  o.  g ) )  =  ( ( s `  f )  o.  (
s `  g )
)  /\  A. f  e.  T  ( R `  ( s `  f
) )  .<_  ( R `
 f ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   {cab 2390   A.wral 2666   _Vcvv 2916   class class class wbr 4172    e. cmpt 4226    o. ccom 4841   -->wf 5409   ` cfv 5413  (class class class)co 6040    ^m cmap 6977   lecple 13491   LHypclh 30466   LTrncltrn 30583   trLctrl 30640   TEndoctendo 31234
This theorem is referenced by:  istendo  31242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-map 6979  df-tendo 31237
  Copyright terms: Public domain W3C validator