Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplcom Structured version   Unicode version

Theorem tendoplcom 33801
Description: The endomorphism sum operation is commutative. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h  |-  H  =  ( LHyp `  K
)
tendopl.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendopl.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendopl.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
Assertion
Ref Expression
tendoplcom  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U P V )  =  ( V P U ) )
Distinct variable groups:    t, s, E    f, s, t, T   
f, W, s, t
Allowed substitution hints:    P( t, f, s)    U( t, f, s)    E( f)    H( t, f, s)    K( t, f, s)    V( t, f, s)

Proof of Theorem tendoplcom
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simp1 997 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 tendopl.h . . 3  |-  H  =  ( LHyp `  K
)
3 tendopl.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
4 tendopl.e . . 3  |-  E  =  ( ( TEndo `  K
) `  W )
5 tendopl.p . . 3  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
62, 3, 4, 5tendoplcl 33800 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U P V )  e.  E
)
72, 3, 4, 5tendoplcl 33800 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  U  e.  E
)  ->  ( V P U )  e.  E
)
873com23 1203 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( V P U )  e.  E
)
9 simpl1 1000 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
10 simpl2 1001 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  U  e.  E )
11 simpr 459 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  g  e.  T )
122, 3, 4tendocl 33786 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  g  e.  T
)  ->  ( U `  g )  e.  T
)
139, 10, 11, 12syl3anc 1230 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  ( U `  g )  e.  T )
14 simpl3 1002 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  V  e.  E )
152, 3, 4tendocl 33786 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  g  e.  T
)  ->  ( V `  g )  e.  T
)
169, 14, 11, 15syl3anc 1230 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  ( V `  g )  e.  T )
172, 3ltrncom 33757 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U `  g )  e.  T  /\  ( V `  g
)  e.  T )  ->  ( ( U `
 g )  o.  ( V `  g
) )  =  ( ( V `  g
)  o.  ( U `
 g ) ) )
189, 13, 16, 17syl3anc 1230 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( U `  g
)  o.  ( V `
 g ) )  =  ( ( V `
 g )  o.  ( U `  g
) ) )
195, 3tendopl2 33796 . . . . 5  |-  ( ( U  e.  E  /\  V  e.  E  /\  g  e.  T )  ->  ( ( U P V ) `  g
)  =  ( ( U `  g )  o.  ( V `  g ) ) )
2010, 14, 11, 19syl3anc 1230 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( U P V ) `  g )  =  ( ( U `
 g )  o.  ( V `  g
) ) )
215, 3tendopl2 33796 . . . . 5  |-  ( ( V  e.  E  /\  U  e.  E  /\  g  e.  T )  ->  ( ( V P U ) `  g
)  =  ( ( V `  g )  o.  ( U `  g ) ) )
2214, 10, 11, 21syl3anc 1230 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( V P U ) `  g )  =  ( ( V `
 g )  o.  ( U `  g
) ) )
2318, 20, 223eqtr4d 2453 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( U P V ) `  g )  =  ( ( V P U ) `  g ) )
2423ralrimiva 2818 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  A. g  e.  T  ( ( U P V ) `  g )  =  ( ( V P U ) `  g ) )
252, 3, 4tendoeq1 33783 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( U P V )  e.  E  /\  ( V P U )  e.  E )  /\  A. g  e.  T  (
( U P V ) `  g )  =  ( ( V P U ) `  g ) )  -> 
( U P V )  =  ( V P U ) )
261, 6, 8, 24, 25syl121anc 1235 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U P V )  =  ( V P U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   A.wral 2754    |-> cmpt 4453    o. ccom 4827   ` cfv 5569  (class class class)co 6278    |-> cmpt2 6280   HLchlt 32368   LHypclh 33001   LTrncltrn 33118   TEndoctendo 33771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-riotaBAD 31977
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-1st 6784  df-2nd 6785  df-undef 7005  df-map 7459  df-preset 15881  df-poset 15899  df-plt 15912  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-p0 15993  df-p1 15994  df-lat 16000  df-clat 16062  df-oposet 32194  df-ol 32196  df-oml 32197  df-covers 32284  df-ats 32285  df-atl 32316  df-cvlat 32340  df-hlat 32369  df-llines 32515  df-lplanes 32516  df-lvols 32517  df-lines 32518  df-psubsp 32520  df-pmap 32521  df-padd 32813  df-lhyp 33005  df-laut 33006  df-ldil 33121  df-ltrn 33122  df-trl 33177  df-tendo 33774
This theorem is referenced by:  tendo0plr  33811  tendoipl2  33817  erngdvlem2N  34008  erngdvlem2-rN  34016  dvhvaddcomN  34116
  Copyright terms: Public domain W3C validator