Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoplass Structured version   Unicode version

Theorem tendoplass 35980
Description: The endomorphism sum operation is associative. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h  |-  H  =  ( LHyp `  K
)
tendopl.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendopl.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendopl.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
Assertion
Ref Expression
tendoplass  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S P U ) P V )  =  ( S P ( U P V ) ) )
Distinct variable groups:    t, s, E    f, s, t, T   
f, W, s, t
Allowed substitution hints:    P( t, f, s)    S( t, f, s)    U( t, f, s)    E( f)    H( t, f, s)    K( t, f, s)    V( t, f, s)

Proof of Theorem tendoplass
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simpl 457 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simpr1 1002 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  S  e.  E )
3 simpr2 1003 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  U  e.  E )
4 tendopl.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 tendopl.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
6 tendopl.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
7 tendopl.p . . . . 5  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
84, 5, 6, 7tendoplcl 35978 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  U  e.  E
)  ->  ( S P U )  e.  E
)
91, 2, 3, 8syl3anc 1228 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S P U )  e.  E )
10 simpr3 1004 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  V  e.  E )
114, 5, 6, 7tendoplcl 35978 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S P U )  e.  E  /\  V  e.  E
)  ->  ( ( S P U ) P V )  e.  E
)
121, 9, 10, 11syl3anc 1228 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S P U ) P V )  e.  E )
134, 5, 6, 7tendoplcl 35978 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U P V )  e.  E
)
141, 3, 10, 13syl3anc 1228 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( U P V )  e.  E )
154, 5, 6, 7tendoplcl 35978 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( U P V )  e.  E )  ->  ( S P ( U P V ) )  e.  E
)
161, 2, 14, 15syl3anc 1228 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S P ( U P V ) )  e.  E )
17 coass 5532 . . . . 5  |-  ( ( ( S `  g
)  o.  ( U `
 g ) )  o.  ( V `  g ) )  =  ( ( S `  g )  o.  (
( U `  g
)  o.  ( V `
 g ) ) )
18 simplr1 1038 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  S  e.  E )
19 simplr2 1039 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  U  e.  E )
20 simpr 461 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  g  e.  T )
217, 5tendopl2 35974 . . . . . . 7  |-  ( ( S  e.  E  /\  U  e.  E  /\  g  e.  T )  ->  ( ( S P U ) `  g
)  =  ( ( S `  g )  o.  ( U `  g ) ) )
2218, 19, 20, 21syl3anc 1228 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S P U ) `  g )  =  ( ( S `
 g )  o.  ( U `  g
) ) )
2322coeq1d 5170 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S P U ) `  g
)  o.  ( V `
 g ) )  =  ( ( ( S `  g )  o.  ( U `  g ) )  o.  ( V `  g
) ) )
24 simplr3 1040 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  V  e.  E )
257, 5tendopl2 35974 . . . . . . 7  |-  ( ( U  e.  E  /\  V  e.  E  /\  g  e.  T )  ->  ( ( U P V ) `  g
)  =  ( ( U `  g )  o.  ( V `  g ) ) )
2619, 24, 20, 25syl3anc 1228 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( U P V ) `  g )  =  ( ( U `
 g )  o.  ( V `  g
) ) )
2726coeq2d 5171 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S `  g
)  o.  ( ( U P V ) `
 g ) )  =  ( ( S `
 g )  o.  ( ( U `  g )  o.  ( V `  g )
) ) )
2817, 23, 273eqtr4a 2534 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S P U ) `  g
)  o.  ( V `
 g ) )  =  ( ( S `
 g )  o.  ( ( U P V ) `  g
) ) )
299adantr 465 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( S P U )  e.  E )
307, 5tendopl2 35974 . . . . 5  |-  ( ( ( S P U )  e.  E  /\  V  e.  E  /\  g  e.  T )  ->  ( ( ( S P U ) P V ) `  g
)  =  ( ( ( S P U ) `  g )  o.  ( V `  g ) ) )
3129, 24, 20, 30syl3anc 1228 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S P U ) P V ) `  g )  =  ( ( ( S P U ) `
 g )  o.  ( V `  g
) ) )
3214adantr 465 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( U P V )  e.  E )
337, 5tendopl2 35974 . . . . 5  |-  ( ( S  e.  E  /\  ( U P V )  e.  E  /\  g  e.  T )  ->  (
( S P ( U P V ) ) `  g )  =  ( ( S `
 g )  o.  ( ( U P V ) `  g
) ) )
3418, 32, 20, 33syl3anc 1228 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S P ( U P V ) ) `  g )  =  ( ( S `
 g )  o.  ( ( U P V ) `  g
) ) )
3528, 31, 343eqtr4d 2518 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S P U ) P V ) `  g )  =  ( ( S P ( U P V ) ) `  g ) )
3635ralrimiva 2881 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  A. g  e.  T  ( ( ( S P U ) P V ) `  g
)  =  ( ( S P ( U P V ) ) `
 g ) )
374, 5, 6tendoeq1 35961 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( S P U ) P V )  e.  E  /\  ( S P ( U P V ) )  e.  E )  /\  A. g  e.  T  (
( ( S P U ) P V ) `  g )  =  ( ( S P ( U P V ) ) `  g ) )  -> 
( ( S P U ) P V )  =  ( S P ( U P V ) ) )
381, 12, 16, 36, 37syl121anc 1233 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S P U ) P V )  =  ( S P ( U P V ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817    |-> cmpt 4511    o. ccom 5009   ` cfv 5594  (class class class)co 6295    |-> cmpt2 6297   HLchlt 34548   LHypclh 35181   LTrncltrn 35298   TEndoctendo 35949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-riotaBAD 34157
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6795  df-2nd 6796  df-undef 7014  df-map 7434  df-poset 15450  df-plt 15462  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-p1 15544  df-lat 15550  df-clat 15612  df-oposet 34374  df-ol 34376  df-oml 34377  df-covers 34464  df-ats 34465  df-atl 34496  df-cvlat 34520  df-hlat 34549  df-llines 34695  df-lplanes 34696  df-lvols 34697  df-lines 34698  df-psubsp 34700  df-pmap 34701  df-padd 34993  df-lhyp 35185  df-laut 35186  df-ldil 35301  df-ltrn 35302  df-trl 35356  df-tendo 35952
This theorem is referenced by:  erngdvlem1  36185  erngdvlem1-rN  36193
  Copyright terms: Public domain W3C validator