Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoidcl Structured version   Unicode version

Theorem tendoidcl 36911
Description: The identity is a trace-preserving endomorphism. (Contributed by NM, 30-Jul-2013.)
Hypotheses
Ref Expression
tendof.h  |-  H  =  ( LHyp `  K
)
tendof.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendof.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
tendoidcl  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  E )

Proof of Theorem tendoidcl
Dummy variables  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2454 . 2  |-  ( le
`  K )  =  ( le `  K
)
2 tendof.h . 2  |-  H  =  ( LHyp `  K
)
3 tendof.t . 2  |-  T  =  ( ( LTrn `  K
) `  W )
4 eqid 2454 . 2  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
5 tendof.e . 2  |-  E  =  ( ( TEndo `  K
) `  W )
6 id 22 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 f1oi 5833 . . 3  |-  (  _I  |`  T ) : T -1-1-onto-> T
8 f1of 5798 . . 3  |-  ( (  _I  |`  T ) : T -1-1-onto-> T  ->  (  _I  |`  T ) : T --> T )
97, 8mp1i 12 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T ) : T --> T )
102, 3ltrnco 36861 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T  /\  g  e.  T
)  ->  ( f  o.  g )  e.  T
)
11 fvresi 6073 . . . 4  |-  ( ( f  o.  g )  e.  T  ->  (
(  _I  |`  T ) `
 ( f  o.  g ) )  =  ( f  o.  g
) )
1210, 11syl 16 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T  /\  g  e.  T
)  ->  ( (  _I  |`  T ) `  ( f  o.  g
) )  =  ( f  o.  g ) )
13 fvresi 6073 . . . . 5  |-  ( f  e.  T  ->  (
(  _I  |`  T ) `
 f )  =  f )
14133ad2ant2 1016 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T  /\  g  e.  T
)  ->  ( (  _I  |`  T ) `  f )  =  f )
15 fvresi 6073 . . . . 5  |-  ( g  e.  T  ->  (
(  _I  |`  T ) `
 g )  =  g )
16153ad2ant3 1017 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T  /\  g  e.  T
)  ->  ( (  _I  |`  T ) `  g )  =  g )
1714, 16coeq12d 5156 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T  /\  g  e.  T
)  ->  ( (
(  _I  |`  T ) `
 f )  o.  ( (  _I  |`  T ) `
 g ) )  =  ( f  o.  g ) )
1812, 17eqtr4d 2498 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T  /\  g  e.  T
)  ->  ( (  _I  |`  T ) `  ( f  o.  g
) )  =  ( ( (  _I  |`  T ) `
 f )  o.  ( (  _I  |`  T ) `
 g ) ) )
1913adantl 464 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T
)  ->  ( (  _I  |`  T ) `  f )  =  f )
2019fveq2d 5852 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T
)  ->  ( (
( trL `  K
) `  W ) `  ( (  _I  |`  T ) `
 f ) )  =  ( ( ( trL `  K ) `
 W ) `  f ) )
21 hllat 35504 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
2221ad2antrr 723 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T
)  ->  K  e.  Lat )
23 eqid 2454 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
2423, 2, 3, 4trlcl 36305 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T
)  ->  ( (
( trL `  K
) `  W ) `  f )  e.  (
Base `  K )
)
2523, 1latref 15885 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( ( trL `  K ) `  W
) `  f )  e.  ( Base `  K
) )  ->  (
( ( trL `  K
) `  W ) `  f ) ( le
`  K ) ( ( ( trL `  K
) `  W ) `  f ) )
2622, 24, 25syl2anc 659 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T
)  ->  ( (
( trL `  K
) `  W ) `  f ) ( le
`  K ) ( ( ( trL `  K
) `  W ) `  f ) )
2720, 26eqbrtrd 4459 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  f  e.  T
)  ->  ( (
( trL `  K
) `  W ) `  ( (  _I  |`  T ) `
 f ) ) ( le `  K
) ( ( ( trL `  K ) `
 W ) `  f ) )
281, 2, 3, 4, 5, 6, 9, 18, 27istendod 36904 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  e.  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   class class class wbr 4439    _I cid 4779    |` cres 4990    o. ccom 4992   -->wf 5566   -1-1-onto->wf1o 5569   ` cfv 5570   Basecbs 14719   lecple 14794   Latclat 15877   HLchlt 35491   LHypclh 36124   LTrncltrn 36241   trLctrl 36299   TEndoctendo 36894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-riotaBAD 35100
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-undef 6994  df-map 7414  df-preset 15759  df-poset 15777  df-plt 15790  df-lub 15806  df-glb 15807  df-join 15808  df-meet 15809  df-p0 15871  df-p1 15872  df-lat 15878  df-clat 15940  df-oposet 35317  df-ol 35319  df-oml 35320  df-covers 35407  df-ats 35408  df-atl 35439  df-cvlat 35463  df-hlat 35492  df-llines 35638  df-lplanes 35639  df-lvols 35640  df-lines 35641  df-psubsp 35643  df-pmap 35644  df-padd 35936  df-lhyp 36128  df-laut 36129  df-ldil 36244  df-ltrn 36245  df-trl 36300  df-tendo 36897
This theorem is referenced by:  cdleml8  37125  erng1lem  37129  erngdvlem3  37132  erng1r  37137  erngdvlem3-rN  37140  erngdvlem4-rN  37141  dvalveclem  37168  dvhlveclem  37251  dvheveccl  37255  dvhopN  37259  diclspsn  37337  cdlemn4  37341  cdlemn4a  37342  cdlemn11a  37350  dihord6apre  37399  dihatlat  37477  dihatexv  37481
  Copyright terms: Public domain W3C validator