Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoid0 Structured version   Unicode version

Theorem tendoid0 34361
Description: A trace-preserving endomorphism is the additive identity iff at least one of its values (at a non-identity translation) is the identity translation. (Contributed by NM, 1-Aug-2013.)
Hypotheses
Ref Expression
tendoid0.b  |-  B  =  ( Base `  K
)
tendoid0.h  |-  H  =  ( LHyp `  K
)
tendoid0.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoid0.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendoid0.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
tendoid0  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  ( ( U `  F )  =  (  _I  |`  B )  <-> 
U  =  O ) )
Distinct variable groups:    B, f    T, f
Allowed substitution hints:    U( f)    E( f)    F( f)    H( f)    K( f)    O( f)    W( f)

Proof of Theorem tendoid0
StepHypRef Expression
1 simp3l 1033 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  F  e.  T )
2 tendoid0.o . . . . . 6  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
3 tendoid0.b . . . . . 6  |-  B  =  ( Base `  K
)
42, 3tendo02 34323 . . . . 5  |-  ( F  e.  T  ->  ( O `  F )  =  (  _I  |`  B ) )
51, 4syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  ( O `  F )  =  (  _I  |`  B )
)
65eqeq2d 2436 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  ( ( U `  F )  =  ( O `  F )  <->  ( U `  F )  =  (  _I  |`  B )
) )
7 simpl1 1008 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( U `  F )  =  ( O `  F ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
8 simpl2 1009 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( U `  F )  =  ( O `  F ) )  ->  U  e.  E )
9 tendoid0.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
10 tendoid0.t . . . . . . 7  |-  T  =  ( ( LTrn `  K
) `  W )
11 tendoid0.e . . . . . . 7  |-  E  =  ( ( TEndo `  K
) `  W )
123, 9, 10, 11, 2tendo0cl 34326 . . . . . 6  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
137, 12syl 17 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( U `  F )  =  ( O `  F ) )  ->  O  e.  E )
14 simpr 462 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( U `  F )  =  ( O `  F ) )  -> 
( U `  F
)  =  ( O `
 F ) )
15 simpl3l 1060 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( U `  F )  =  ( O `  F ) )  ->  F  e.  T )
16 simpl3r 1061 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( U `  F )  =  ( O `  F ) )  ->  F  =/=  (  _I  |`  B ) )
173, 9, 10, 11tendocan 34360 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  O  e.  E  /\  ( U `
 F )  =  ( O `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  U  =  O )
187, 8, 13, 14, 15, 16, 17syl132anc 1282 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  ( U `  F )  =  ( O `  F ) )  ->  U  =  O )
1918ex 435 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  ( ( U `  F )  =  ( O `  F )  ->  U  =  O ) )
206, 19sylbird 238 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  ( ( U `  F )  =  (  _I  |`  B )  ->  U  =  O ) )
21 fveq1 5880 . . . 4  |-  ( U  =  O  ->  ( U `  F )  =  ( O `  F ) )
2221eqeq1d 2424 . . 3  |-  ( U  =  O  ->  (
( U `  F
)  =  (  _I  |`  B )  <->  ( O `  F )  =  (  _I  |`  B )
) )
235, 22syl5ibrcom 225 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  ( U  =  O  ->  ( U `
 F )  =  (  _I  |`  B ) ) )
2420, 23impbid 193 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  ( ( U `  F )  =  (  _I  |`  B )  <-> 
U  =  O ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2614    |-> cmpt 4482    _I cid 4763    |` cres 4855   ` cfv 5601   Basecbs 15120   HLchlt 32885   LHypclh 33518   LTrncltrn 33635   TEndoctendo 34288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597  ax-riotaBAD 32494
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-undef 7031  df-map 7485  df-preset 16172  df-poset 16190  df-plt 16203  df-lub 16219  df-glb 16220  df-join 16221  df-meet 16222  df-p0 16284  df-p1 16285  df-lat 16291  df-clat 16353  df-oposet 32711  df-ol 32713  df-oml 32714  df-covers 32801  df-ats 32802  df-atl 32833  df-cvlat 32857  df-hlat 32886  df-llines 33032  df-lplanes 33033  df-lvols 33034  df-lines 33035  df-psubsp 33037  df-pmap 33038  df-padd 33330  df-lhyp 33522  df-laut 33523  df-ldil 33638  df-ltrn 33639  df-trl 33694  df-tendo 34291
This theorem is referenced by:  tendoconid  34365  tendotr  34366  cdleml3N  34514  tendospcanN  34560
  Copyright terms: Public domain W3C validator