Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendodi2 Structured version   Unicode version

Theorem tendodi2 36386
Description: Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h  |-  H  =  ( LHyp `  K
)
tendopl.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendopl.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendopl.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
Assertion
Ref Expression
tendodi2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S P U )  o.  V
)  =  ( ( S  o.  V ) P ( U  o.  V ) ) )
Distinct variable groups:    t, s, E    f, s, t, T   
f, W, s, t
Allowed substitution hints:    P( t, f, s)    S( t, f, s)    U( t, f, s)    E( f)    H( t, f, s)    K( t, f, s)    V( t, f, s)

Proof of Theorem tendodi2
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simpl 457 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simpr1 1003 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  S  e.  E )
3 simpr2 1004 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  U  e.  E )
4 tendopl.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 tendopl.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
6 tendopl.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
7 tendopl.p . . . . 5  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
84, 5, 6, 7tendoplcl 36382 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  U  e.  E
)  ->  ( S P U )  e.  E
)
91, 2, 3, 8syl3anc 1229 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S P U )  e.  E )
10 simpr3 1005 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  V  e.  E )
114, 6tendococl 36373 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S P U )  e.  E  /\  V  e.  E
)  ->  ( ( S P U )  o.  V )  e.  E
)
121, 9, 10, 11syl3anc 1229 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S P U )  o.  V
)  e.  E )
134, 6tendococl 36373 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  V  e.  E
)  ->  ( S  o.  V )  e.  E
)
141, 2, 10, 13syl3anc 1229 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S  o.  V
)  e.  E )
154, 6tendococl 36373 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U  o.  V )  e.  E
)
161, 3, 10, 15syl3anc 1229 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( U  o.  V
)  e.  E )
174, 5, 6, 7tendoplcl 36382 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  o.  V )  e.  E  /\  ( U  o.  V
)  e.  E )  ->  ( ( S  o.  V ) P ( U  o.  V
) )  e.  E
)
181, 14, 16, 17syl3anc 1229 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S  o.  V ) P ( U  o.  V ) )  e.  E )
19 simpll 753 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
20 simplr1 1039 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  S  e.  E )
21 simplr2 1040 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  U  e.  E )
2219, 20, 21, 8syl3anc 1229 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( S P U )  e.  E )
23 simplr3 1041 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  V  e.  E )
24 simpr 461 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  g  e.  T )
254, 5, 6tendocoval 36367 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S P U )  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( ( S P U )  o.  V
) `  g )  =  ( ( S P U ) `  ( V `  g ) ) )
2619, 22, 23, 24, 25syl121anc 1234 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S P U )  o.  V
) `  g )  =  ( ( S P U ) `  ( V `  g ) ) )
27 simplll 759 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  K  e.  HL )
28 simpllr 760 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  W  e.  H )
294, 5, 6tendocoval 36367 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( S  o.  V
) `  g )  =  ( S `  ( V `  g ) ) )
3027, 28, 20, 23, 24, 29syl221anc 1240 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S  o.  V
) `  g )  =  ( S `  ( V `  g ) ) )
314, 5, 6tendocoval 36367 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( U  o.  V
) `  g )  =  ( U `  ( V `  g ) ) )
3227, 28, 21, 23, 24, 31syl221anc 1240 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( U  o.  V
) `  g )  =  ( U `  ( V `  g ) ) )
3330, 32coeq12d 5157 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S  o.  V ) `  g
)  o.  ( ( U  o.  V ) `
 g ) )  =  ( ( S `
 ( V `  g ) )  o.  ( U `  ( V `  g )
) ) )
3419, 20, 23, 13syl3anc 1229 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( S  o.  V )  e.  E )
3519, 21, 23, 15syl3anc 1229 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( U  o.  V )  e.  E )
367, 5tendopl2 36378 . . . . . 6  |-  ( ( ( S  o.  V
)  e.  E  /\  ( U  o.  V
)  e.  E  /\  g  e.  T )  ->  ( ( ( S  o.  V ) P ( U  o.  V
) ) `  g
)  =  ( ( ( S  o.  V
) `  g )  o.  ( ( U  o.  V ) `  g
) ) )
3734, 35, 24, 36syl3anc 1229 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S  o.  V ) P ( U  o.  V ) ) `  g )  =  ( ( ( S  o.  V ) `
 g )  o.  ( ( U  o.  V ) `  g
) ) )
384, 5, 6tendocl 36368 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  g  e.  T
)  ->  ( V `  g )  e.  T
)
3919, 23, 24, 38syl3anc 1229 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( V `  g )  e.  T )
407, 5tendopl2 36378 . . . . . 6  |-  ( ( S  e.  E  /\  U  e.  E  /\  ( V `  g )  e.  T )  -> 
( ( S P U ) `  ( V `  g )
)  =  ( ( S `  ( V `
 g ) )  o.  ( U `  ( V `  g ) ) ) )
4120, 21, 39, 40syl3anc 1229 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S P U ) `  ( V `
 g ) )  =  ( ( S `
 ( V `  g ) )  o.  ( U `  ( V `  g )
) ) )
4233, 37, 413eqtr4rd 2495 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S P U ) `  ( V `
 g ) )  =  ( ( ( S  o.  V ) P ( U  o.  V ) ) `  g ) )
4326, 42eqtrd 2484 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S P U )  o.  V
) `  g )  =  ( ( ( S  o.  V ) P ( U  o.  V ) ) `  g ) )
4443ralrimiva 2857 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  A. g  e.  T  ( ( ( S P U )  o.  V ) `  g
)  =  ( ( ( S  o.  V
) P ( U  o.  V ) ) `
 g ) )
454, 5, 6tendoeq1 36365 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( S P U )  o.  V )  e.  E  /\  ( ( S  o.  V ) P ( U  o.  V ) )  e.  E )  /\  A. g  e.  T  (
( ( S P U )  o.  V
) `  g )  =  ( ( ( S  o.  V ) P ( U  o.  V ) ) `  g ) )  -> 
( ( S P U )  o.  V
)  =  ( ( S  o.  V ) P ( U  o.  V ) ) )
461, 12, 18, 44, 45syl121anc 1234 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S P U )  o.  V
)  =  ( ( S  o.  V ) P ( U  o.  V ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   A.wral 2793    |-> cmpt 4495    o. ccom 4993   ` cfv 5578  (class class class)co 6281    |-> cmpt2 6283   HLchlt 34950   LHypclh 35583   LTrncltrn 35700   TEndoctendo 36353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-riotaBAD 34559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-1st 6785  df-2nd 6786  df-undef 7004  df-map 7424  df-preset 15536  df-poset 15554  df-plt 15567  df-lub 15583  df-glb 15584  df-join 15585  df-meet 15586  df-p0 15648  df-p1 15649  df-lat 15655  df-clat 15717  df-oposet 34776  df-ol 34778  df-oml 34779  df-covers 34866  df-ats 34867  df-atl 34898  df-cvlat 34922  df-hlat 34951  df-llines 35097  df-lplanes 35098  df-lvols 35099  df-lines 35100  df-psubsp 35102  df-pmap 35103  df-padd 35395  df-lhyp 35587  df-laut 35588  df-ldil 35703  df-ltrn 35704  df-trl 35759  df-tendo 36356
This theorem is referenced by:  erngdvlem3  36591  erngdvlem3-rN  36599
  Copyright terms: Public domain W3C validator