Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendodi2 Structured version   Unicode version

Theorem tendodi2 34434
Description: Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h  |-  H  =  ( LHyp `  K
)
tendopl.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendopl.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendopl.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
Assertion
Ref Expression
tendodi2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S P U )  o.  V
)  =  ( ( S  o.  V ) P ( U  o.  V ) ) )
Distinct variable groups:    t, s, E    f, s, t, T   
f, W, s, t
Allowed substitution hints:    P( t, f, s)    S( t, f, s)    U( t, f, s)    E( f)    H( t, f, s)    K( t, f, s)    V( t, f, s)

Proof of Theorem tendodi2
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simpl 457 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simpr1 994 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  S  e.  E )
3 simpr2 995 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  U  e.  E )
4 tendopl.h . . . . 5  |-  H  =  ( LHyp `  K
)
5 tendopl.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
6 tendopl.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
7 tendopl.p . . . . 5  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
84, 5, 6, 7tendoplcl 34430 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  U  e.  E
)  ->  ( S P U )  e.  E
)
91, 2, 3, 8syl3anc 1218 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S P U )  e.  E )
10 simpr3 996 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  V  e.  E )
114, 6tendococl 34421 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S P U )  e.  E  /\  V  e.  E
)  ->  ( ( S P U )  o.  V )  e.  E
)
121, 9, 10, 11syl3anc 1218 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S P U )  o.  V
)  e.  E )
134, 6tendococl 34421 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  V  e.  E
)  ->  ( S  o.  V )  e.  E
)
141, 2, 10, 13syl3anc 1218 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S  o.  V
)  e.  E )
154, 6tendococl 34421 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U  o.  V )  e.  E
)
161, 3, 10, 15syl3anc 1218 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( U  o.  V
)  e.  E )
174, 5, 6, 7tendoplcl 34430 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  o.  V )  e.  E  /\  ( U  o.  V
)  e.  E )  ->  ( ( S  o.  V ) P ( U  o.  V
) )  e.  E
)
181, 14, 16, 17syl3anc 1218 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S  o.  V ) P ( U  o.  V ) )  e.  E )
19 simpll 753 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
20 simplr1 1030 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  S  e.  E )
21 simplr2 1031 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  U  e.  E )
2219, 20, 21, 8syl3anc 1218 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( S P U )  e.  E )
23 simplr3 1032 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  V  e.  E )
24 simpr 461 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  g  e.  T )
254, 5, 6tendocoval 34415 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S P U )  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( ( S P U )  o.  V
) `  g )  =  ( ( S P U ) `  ( V `  g ) ) )
2619, 22, 23, 24, 25syl121anc 1223 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S P U )  o.  V
) `  g )  =  ( ( S P U ) `  ( V `  g ) ) )
27 simplll 757 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  K  e.  HL )
28 simpllr 758 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  W  e.  H )
294, 5, 6tendocoval 34415 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( S  o.  V
) `  g )  =  ( S `  ( V `  g ) ) )
3027, 28, 20, 23, 24, 29syl221anc 1229 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S  o.  V
) `  g )  =  ( S `  ( V `  g ) ) )
314, 5, 6tendocoval 34415 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( U  o.  V
) `  g )  =  ( U `  ( V `  g ) ) )
3227, 28, 21, 23, 24, 31syl221anc 1229 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( U  o.  V
) `  g )  =  ( U `  ( V `  g ) ) )
3330, 32coeq12d 5009 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S  o.  V ) `  g
)  o.  ( ( U  o.  V ) `
 g ) )  =  ( ( S `
 ( V `  g ) )  o.  ( U `  ( V `  g )
) ) )
3419, 20, 23, 13syl3anc 1218 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( S  o.  V )  e.  E )
3519, 21, 23, 15syl3anc 1218 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( U  o.  V )  e.  E )
367, 5tendopl2 34426 . . . . . 6  |-  ( ( ( S  o.  V
)  e.  E  /\  ( U  o.  V
)  e.  E  /\  g  e.  T )  ->  ( ( ( S  o.  V ) P ( U  o.  V
) ) `  g
)  =  ( ( ( S  o.  V
) `  g )  o.  ( ( U  o.  V ) `  g
) ) )
3734, 35, 24, 36syl3anc 1218 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S  o.  V ) P ( U  o.  V ) ) `  g )  =  ( ( ( S  o.  V ) `
 g )  o.  ( ( U  o.  V ) `  g
) ) )
384, 5, 6tendocl 34416 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  g  e.  T
)  ->  ( V `  g )  e.  T
)
3919, 23, 24, 38syl3anc 1218 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( V `  g )  e.  T )
407, 5tendopl2 34426 . . . . . 6  |-  ( ( S  e.  E  /\  U  e.  E  /\  ( V `  g )  e.  T )  -> 
( ( S P U ) `  ( V `  g )
)  =  ( ( S `  ( V `
 g ) )  o.  ( U `  ( V `  g ) ) ) )
4120, 21, 39, 40syl3anc 1218 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S P U ) `  ( V `
 g ) )  =  ( ( S `
 ( V `  g ) )  o.  ( U `  ( V `  g )
) ) )
4233, 37, 413eqtr4rd 2486 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S P U ) `  ( V `
 g ) )  =  ( ( ( S  o.  V ) P ( U  o.  V ) ) `  g ) )
4326, 42eqtrd 2475 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S P U )  o.  V
) `  g )  =  ( ( ( S  o.  V ) P ( U  o.  V ) ) `  g ) )
4443ralrimiva 2804 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  A. g  e.  T  ( ( ( S P U )  o.  V ) `  g
)  =  ( ( ( S  o.  V
) P ( U  o.  V ) ) `
 g ) )
454, 5, 6tendoeq1 34413 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( ( S P U )  o.  V )  e.  E  /\  ( ( S  o.  V ) P ( U  o.  V ) )  e.  E )  /\  A. g  e.  T  (
( ( S P U )  o.  V
) `  g )  =  ( ( ( S  o.  V ) P ( U  o.  V ) ) `  g ) )  -> 
( ( S P U )  o.  V
)  =  ( ( S  o.  V ) P ( U  o.  V ) ) )
461, 12, 18, 44, 45syl121anc 1223 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S P U )  o.  V
)  =  ( ( S  o.  V ) P ( U  o.  V ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2720    e. cmpt 4355    o. ccom 4849   ` cfv 5423  (class class class)co 6096    e. cmpt2 6098   HLchlt 33000   LHypclh 33633   LTrncltrn 33750   TEndoctendo 34401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-riotaBAD 32609
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-1st 6582  df-2nd 6583  df-undef 6797  df-map 7221  df-poset 15121  df-plt 15133  df-lub 15149  df-glb 15150  df-join 15151  df-meet 15152  df-p0 15214  df-p1 15215  df-lat 15221  df-clat 15283  df-oposet 32826  df-ol 32828  df-oml 32829  df-covers 32916  df-ats 32917  df-atl 32948  df-cvlat 32972  df-hlat 33001  df-llines 33147  df-lplanes 33148  df-lvols 33149  df-lines 33150  df-psubsp 33152  df-pmap 33153  df-padd 33445  df-lhyp 33637  df-laut 33638  df-ldil 33753  df-ltrn 33754  df-trl 33808  df-tendo 34404
This theorem is referenced by:  erngdvlem3  34639  erngdvlem3-rN  34647
  Copyright terms: Public domain W3C validator