Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendodi1 Structured version   Unicode version

Theorem tendodi1 34179
Description: Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h  |-  H  =  ( LHyp `  K
)
tendopl.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendopl.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendopl.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
Assertion
Ref Expression
tendodi1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S  o.  ( U P V ) )  =  ( ( S  o.  U ) P ( S  o.  V
) ) )
Distinct variable groups:    t, s, E    f, s, t, T   
f, W, s, t
Allowed substitution hints:    P( t, f, s)    S( t, f, s)    U( t, f, s)    E( f)    H( t, f, s)    K( t, f, s)    V( t, f, s)

Proof of Theorem tendodi1
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simpl 457 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
2 simpr1 994 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  S  e.  E )
3 simpr2 995 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  U  e.  E )
4 simpr3 996 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  V  e.  E )
5 tendopl.h . . . . 5  |-  H  =  ( LHyp `  K
)
6 tendopl.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
7 tendopl.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
8 tendopl.p . . . . 5  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
95, 6, 7, 8tendoplcl 34176 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  V  e.  E
)  ->  ( U P V )  e.  E
)
101, 3, 4, 9syl3anc 1218 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( U P V )  e.  E )
115, 7tendococl 34167 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  ( U P V )  e.  E )  ->  ( S  o.  ( U P V ) )  e.  E )
121, 2, 10, 11syl3anc 1218 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S  o.  ( U P V ) )  e.  E )
135, 7tendococl 34167 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  U  e.  E
)  ->  ( S  o.  U )  e.  E
)
141, 2, 3, 13syl3anc 1218 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S  o.  U
)  e.  E )
155, 7tendococl 34167 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  V  e.  E
)  ->  ( S  o.  V )  e.  E
)
161, 2, 4, 15syl3anc 1218 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S  o.  V
)  e.  E )
175, 6, 7, 8tendoplcl 34176 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  o.  U )  e.  E  /\  ( S  o.  V
)  e.  E )  ->  ( ( S  o.  U ) P ( S  o.  V
) )  e.  E
)
181, 14, 16, 17syl3anc 1218 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( ( S  o.  U ) P ( S  o.  V ) )  e.  E )
19 simplll 757 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  K  e.  HL )
20 simpllr 758 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  W  e.  H )
21 simplr1 1030 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  S  e.  E )
22 simpll 753 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
23 simplr2 1031 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  U  e.  E )
24 simpr 461 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  g  e.  T )
255, 6, 7tendocl 34162 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  U  e.  E  /\  g  e.  T
)  ->  ( U `  g )  e.  T
)
2622, 23, 24, 25syl3anc 1218 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( U `  g )  e.  T )
27 simplr3 1032 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  V  e.  E )
285, 6, 7tendocl 34162 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  V  e.  E  /\  g  e.  T
)  ->  ( V `  g )  e.  T
)
2922, 27, 24, 28syl3anc 1218 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( V `  g )  e.  T )
305, 6, 7tendovalco 34160 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H  /\  S  e.  E )  /\  ( ( U `  g )  e.  T  /\  ( V `  g
)  e.  T ) )  ->  ( S `  ( ( U `  g )  o.  ( V `  g )
) )  =  ( ( S `  ( U `  g )
)  o.  ( S `
 ( V `  g ) ) ) )
3119, 20, 21, 26, 29, 30syl32anc 1226 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( S `  ( ( U `  g )  o.  ( V `  g
) ) )  =  ( ( S `  ( U `  g ) )  o.  ( S `
 ( V `  g ) ) ) )
328, 6tendopl2 34172 . . . . . . 7  |-  ( ( U  e.  E  /\  V  e.  E  /\  g  e.  T )  ->  ( ( U P V ) `  g
)  =  ( ( U `  g )  o.  ( V `  g ) ) )
3323, 27, 24, 32syl3anc 1218 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( U P V ) `  g )  =  ( ( U `
 g )  o.  ( V `  g
) ) )
3433fveq2d 5688 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( S `  ( ( U P V ) `  g ) )  =  ( S `  (
( U `  g
)  o.  ( V `
 g ) ) ) )
355, 6, 7tendocoval 34161 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E )  /\  g  e.  T )  ->  (
( S  o.  U
) `  g )  =  ( S `  ( U `  g ) ) )
3619, 20, 21, 23, 24, 35syl221anc 1229 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S  o.  U
) `  g )  =  ( S `  ( U `  g ) ) )
375, 6, 7tendocoval 34161 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  V  e.  E )  /\  g  e.  T )  ->  (
( S  o.  V
) `  g )  =  ( S `  ( V `  g ) ) )
3819, 20, 21, 27, 24, 37syl221anc 1229 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S  o.  V
) `  g )  =  ( S `  ( V `  g ) ) )
3936, 38coeq12d 4996 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S  o.  U ) `  g
)  o.  ( ( S  o.  V ) `
 g ) )  =  ( ( S `
 ( U `  g ) )  o.  ( S `  ( V `  g )
) ) )
4031, 34, 393eqtr4rd 2480 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S  o.  U ) `  g
)  o.  ( ( S  o.  V ) `
 g ) )  =  ( S `  ( ( U P V ) `  g
) ) )
4122, 21, 23, 13syl3anc 1218 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( S  o.  U )  e.  E )
4222, 21, 27, 15syl3anc 1218 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( S  o.  V )  e.  E )
438, 6tendopl2 34172 . . . . 5  |-  ( ( ( S  o.  U
)  e.  E  /\  ( S  o.  V
)  e.  E  /\  g  e.  T )  ->  ( ( ( S  o.  U ) P ( S  o.  V
) ) `  g
)  =  ( ( ( S  o.  U
) `  g )  o.  ( ( S  o.  V ) `  g
) ) )
4441, 42, 24, 43syl3anc 1218 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( ( S  o.  U ) P ( S  o.  V ) ) `  g )  =  ( ( ( S  o.  U ) `
 g )  o.  ( ( S  o.  V ) `  g
) ) )
4522, 23, 27, 9syl3anc 1218 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  ( U P V )  e.  E )
465, 6, 7tendocoval 34161 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  ( U P V )  e.  E )  /\  g  e.  T )  ->  (
( S  o.  ( U P V ) ) `
 g )  =  ( S `  (
( U P V ) `  g ) ) )
4722, 21, 45, 24, 46syl121anc 1223 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S  o.  ( U P V ) ) `
 g )  =  ( S `  (
( U P V ) `  g ) ) )
4840, 44, 473eqtr4rd 2480 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E )
)  /\  g  e.  T )  ->  (
( S  o.  ( U P V ) ) `
 g )  =  ( ( ( S  o.  U ) P ( S  o.  V
) ) `  g
) )
4948ralrimiva 2793 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  ->  A. g  e.  T  ( ( S  o.  ( U P V ) ) `  g )  =  ( ( ( S  o.  U ) P ( S  o.  V ) ) `  g ) )
505, 6, 7tendoeq1 34159 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  o.  ( U P V ) )  e.  E  /\  ( ( S  o.  U ) P ( S  o.  V ) )  e.  E )  /\  A. g  e.  T  (
( S  o.  ( U P V ) ) `
 g )  =  ( ( ( S  o.  U ) P ( S  o.  V
) ) `  g
) )  ->  ( S  o.  ( U P V ) )  =  ( ( S  o.  U ) P ( S  o.  V ) ) )
511, 12, 18, 49, 50syl121anc 1223 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  U  e.  E  /\  V  e.  E ) )  -> 
( S  o.  ( U P V ) )  =  ( ( S  o.  U ) P ( S  o.  V
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2709    e. cmpt 4343    o. ccom 4836   ` cfv 5411  (class class class)co 6086    e. cmpt2 6088   HLchlt 32746   LHypclh 33379   LTrncltrn 33496   TEndoctendo 34147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2418  ax-rep 4396  ax-sep 4406  ax-nul 4414  ax-pow 4463  ax-pr 4524  ax-un 6367  ax-riotaBAD 32355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 2968  df-sbc 3180  df-csb 3282  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3631  df-if 3785  df-pw 3855  df-sn 3871  df-pr 3873  df-op 3877  df-uni 4085  df-iun 4166  df-iin 4167  df-br 4286  df-opab 4344  df-mpt 4345  df-id 4628  df-xp 4838  df-rel 4839  df-cnv 4840  df-co 4841  df-dm 4842  df-rn 4843  df-res 4844  df-ima 4845  df-iota 5374  df-fun 5413  df-fn 5414  df-f 5415  df-f1 5416  df-fo 5417  df-f1o 5418  df-fv 5419  df-riota 6045  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-1st 6572  df-2nd 6573  df-undef 6784  df-map 7208  df-poset 15108  df-plt 15120  df-lub 15136  df-glb 15137  df-join 15138  df-meet 15139  df-p0 15201  df-p1 15202  df-lat 15208  df-clat 15270  df-oposet 32572  df-ol 32574  df-oml 32575  df-covers 32662  df-ats 32663  df-atl 32694  df-cvlat 32718  df-hlat 32747  df-llines 32893  df-lplanes 32894  df-lvols 32895  df-lines 32896  df-psubsp 32898  df-pmap 32899  df-padd 33191  df-lhyp 33383  df-laut 33384  df-ldil 33499  df-ltrn 33500  df-trl 33554  df-tendo 34150
This theorem is referenced by:  erngdvlem3  34385  erngdvlem3-rN  34393
  Copyright terms: Public domain W3C validator