Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendocnv Structured version   Unicode version

Theorem tendocnv 34558
Description: Converse of a trace-preserving endomorphism value. (Contributed by NM, 7-Apr-2014.)
Hypotheses
Ref Expression
tendosp.h  |-  H  =  ( LHyp `  K
)
tendosp.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendosp.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
tendocnv  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  `' ( S `  F )  =  ( S `  `' F ) )

Proof of Theorem tendocnv
StepHypRef Expression
1 simp1 1005 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 tendosp.h . . . . . 6  |-  H  =  ( LHyp `  K
)
3 tendosp.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
4 tendosp.e . . . . . 6  |-  E  =  ( ( TEndo `  K
) `  W )
52, 3, 4tendocl 34303 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( S `  F )  e.  T
)
6 eqid 2422 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
76, 2, 3ltrn1o 33658 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S `  F )  e.  T
)  ->  ( S `  F ) : (
Base `  K ) -1-1-onto-> ( Base `  K ) )
81, 5, 7syl2anc 665 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( S `  F ) : (
Base `  K ) -1-1-onto-> ( Base `  K ) )
9 f1ococnv1 5859 . . . 4  |-  ( ( S `  F ) : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  ( `' ( S `
 F )  o.  ( S `  F
) )  =  (  _I  |`  ( Base `  K ) ) )
108, 9syl 17 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( `' ( S `  F )  o.  ( S `  F ) )  =  (  _I  |`  ( Base `  K ) ) )
1110coeq1d 5015 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( ( `' ( S `  F )  o.  ( S `  F )
)  o.  `' ( S `  F ) )  =  ( (  _I  |`  ( Base `  K ) )  o.  `' ( S `  F ) ) )
12 simp2 1006 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  S  e.  E )
136, 2, 4tendoid 34309 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( S `  (  _I  |`  ( Base `  K ) ) )  =  (  _I  |`  ( Base `  K
) ) )
141, 12, 13syl2anc 665 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( S `  (  _I  |`  ( Base `  K ) ) )  =  (  _I  |`  ( Base `  K
) ) )
156, 2, 3ltrn1o 33658 . . . . . . . . . 10  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
16153adant2 1024 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
17 f1ococnv2 5857 . . . . . . . . 9  |-  ( F : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  ( F  o.  `' F )  =  (  _I  |`  ( Base `  K ) ) )
1816, 17syl 17 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( F  o.  `' F )  =  (  _I  |`  ( Base `  K ) ) )
1918fveq2d 5885 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( S `  ( F  o.  `' F ) )  =  ( S `  (  _I  |`  ( Base `  K
) ) ) )
20 f1ococnv2 5857 . . . . . . . 8  |-  ( ( S `  F ) : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  ( ( S `  F )  o.  `' ( S `  F ) )  =  (  _I  |`  ( Base `  K
) ) )
218, 20syl 17 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( ( S `  F )  o.  `' ( S `  F ) )  =  (  _I  |`  ( Base `  K ) ) )
2214, 19, 213eqtr4rd 2474 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( ( S `  F )  o.  `' ( S `  F ) )  =  ( S `  ( F  o.  `' F
) ) )
23 simp3 1007 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  F  e.  T )
242, 3ltrncnv 33680 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  `' F  e.  T )
25243adant2 1024 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  `' F  e.  T )
262, 3, 4tendospdi1 34557 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S  e.  E  /\  F  e.  T  /\  `' F  e.  T ) )  -> 
( S `  ( F  o.  `' F
) )  =  ( ( S `  F
)  o.  ( S `
 `' F ) ) )
271, 12, 23, 25, 26syl13anc 1266 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( S `  ( F  o.  `' F ) )  =  ( ( S `  F )  o.  ( S `  `' F
) ) )
2822, 27eqtrd 2463 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( ( S `  F )  o.  `' ( S `  F ) )  =  ( ( S `  F )  o.  ( S `  `' F
) ) )
2928coeq2d 5016 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( `' ( S `  F )  o.  ( ( S `
 F )  o.  `' ( S `  F ) ) )  =  ( `' ( S `  F )  o.  ( ( S `
 F )  o.  ( S `  `' F ) ) ) )
30 coass 5373 . . . 4  |-  ( ( `' ( S `  F )  o.  ( S `  F )
)  o.  `' ( S `  F ) )  =  ( `' ( S `  F
)  o.  ( ( S `  F )  o.  `' ( S `
 F ) ) )
31 coass 5373 . . . 4  |-  ( ( `' ( S `  F )  o.  ( S `  F )
)  o.  ( S `
 `' F ) )  =  ( `' ( S `  F
)  o.  ( ( S `  F )  o.  ( S `  `' F ) ) )
3229, 30, 313eqtr4g 2488 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( ( `' ( S `  F )  o.  ( S `  F )
)  o.  `' ( S `  F ) )  =  ( ( `' ( S `  F )  o.  ( S `  F )
)  o.  ( S `
 `' F ) ) )
3310coeq1d 5015 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( ( `' ( S `  F )  o.  ( S `  F )
)  o.  ( S `
 `' F ) )  =  ( (  _I  |`  ( Base `  K ) )  o.  ( S `  `' F ) ) )
342, 3, 4tendocl 34303 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  `' F  e.  T
)  ->  ( S `  `' F )  e.  T
)
3525, 34syld3an3 1309 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( S `  `' F )  e.  T
)
366, 2, 3ltrn1o 33658 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S `  `' F )  e.  T
)  ->  ( S `  `' F ) : (
Base `  K ) -1-1-onto-> ( Base `  K ) )
371, 35, 36syl2anc 665 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( S `  `' F ) : (
Base `  K ) -1-1-onto-> ( Base `  K ) )
38 f1of 5831 . . . 4  |-  ( ( S `  `' F
) : ( Base `  K ) -1-1-onto-> ( Base `  K
)  ->  ( S `  `' F ) : (
Base `  K ) --> ( Base `  K )
)
39 fcoi2 5775 . . . 4  |-  ( ( S `  `' F
) : ( Base `  K ) --> ( Base `  K )  ->  (
(  _I  |`  ( Base `  K ) )  o.  ( S `  `' F ) )  =  ( S `  `' F ) )
4037, 38, 393syl 18 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( (  _I  |`  ( Base `  K
) )  o.  ( S `  `' F
) )  =  ( S `  `' F
) )
4132, 33, 403eqtrd 2467 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( ( `' ( S `  F )  o.  ( S `  F )
)  o.  `' ( S `  F ) )  =  ( S `
 `' F ) )
422, 3ltrncnv 33680 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S `  F )  e.  T
)  ->  `' ( S `  F )  e.  T )
431, 5, 42syl2anc 665 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  `' ( S `  F )  e.  T )
446, 2, 3ltrn1o 33658 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  `' ( S `
 F )  e.  T )  ->  `' ( S `  F ) : ( Base `  K
)
-1-1-onto-> ( Base `  K )
)
451, 43, 44syl2anc 665 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  `' ( S `  F ) : ( Base `  K
)
-1-1-onto-> ( Base `  K )
)
46 f1of 5831 . . 3  |-  ( `' ( S `  F
) : ( Base `  K ) -1-1-onto-> ( Base `  K
)  ->  `' ( S `  F ) : ( Base `  K
) --> ( Base `  K
) )
47 fcoi2 5775 . . 3  |-  ( `' ( S `  F
) : ( Base `  K ) --> ( Base `  K )  ->  (
(  _I  |`  ( Base `  K ) )  o.  `' ( S `
 F ) )  =  `' ( S `
 F ) )
4845, 46, 473syl 18 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  ( (  _I  |`  ( Base `  K
) )  o.  `' ( S `  F ) )  =  `' ( S `  F ) )
4911, 41, 483eqtr3rd 2472 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  F  e.  T
)  ->  `' ( S `  F )  =  ( S `  `' F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    _I cid 4763   `'ccnv 4852    |` cres 4855    o. ccom 4857   -->wf 5597   -1-1-onto->wf1o 5600   ` cfv 5601   Basecbs 15120   HLchlt 32885   LHypclh 33518   LTrncltrn 33635   TEndoctendo 34288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-reu 2778  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-map 7485  df-preset 16172  df-poset 16190  df-plt 16203  df-lub 16219  df-glb 16220  df-join 16221  df-meet 16222  df-p0 16284  df-p1 16285  df-lat 16291  df-clat 16353  df-oposet 32711  df-ol 32713  df-oml 32714  df-covers 32801  df-ats 32802  df-atl 32833  df-cvlat 32857  df-hlat 32886  df-lhyp 33522  df-laut 33523  df-ldil 33638  df-ltrn 33639  df-trl 33694  df-tendo 34291
This theorem is referenced by:  tendospcanN  34560  dihjatcclem4  34958
  Copyright terms: Public domain W3C validator