Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendocl Structured version   Unicode version

Theorem tendocl 34251
Description: Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.)
Hypotheses
Ref Expression
tendof.h  |-  H  =  ( LHyp `  K
)
tendof.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendof.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
tendocl  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  S  e.  E  /\  F  e.  T
)  ->  ( S `  F )  e.  T
)

Proof of Theorem tendocl
StepHypRef Expression
1 tendof.h . . . 4  |-  H  =  ( LHyp `  K
)
2 tendof.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
3 tendof.e . . . 4  |-  E  =  ( ( TEndo `  K
) `  W )
41, 2, 3tendof 34247 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  S  e.  E )  ->  S : T --> T )
543adant3 1008 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  S  e.  E  /\  F  e.  T
)  ->  S : T
--> T )
6 simp3 990 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  S  e.  E  /\  F  e.  T
)  ->  F  e.  T )
75, 6ffvelrnd 5839 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  S  e.  E  /\  F  e.  T
)  ->  ( S `  F )  e.  T
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   -->wf 5409   ` cfv 5413   LHypclh 33468   LTrncltrn 33585   TEndoctendo 34236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-map 7208  df-tendo 34239
This theorem is referenced by:  tendoco2  34252  tendococl  34256  tendoid  34257  tendoplcl2  34262  tendopltp  34264  tendoplcl  34265  tendoplcom  34266  tendodi1  34268  tendodi2  34269  tendo0pl  34275  tendoicl  34280  tendoipl  34281  cdlemi1  34302  cdlemi2  34303  cdlemi  34304  cdlemj2  34306  tendo0mul  34310  tendoconid  34313  tendotr  34314  cdleml1N  34460  cdleml2N  34461  cdleml6  34465  dva1dim  34469  tendospcl  34503  tendocnv  34506  tendospcanN  34508  dvalveclem  34510  dialss  34531  dvhvscacl  34588  dvhlveclem  34593  dib1dim  34650  dib1dim2  34653  diblss  34655  dicssdvh  34671  diclspsn  34679  cdlemn6  34687  dihopelvalcpre  34733  dih1  34771  dihglbcpreN  34785  dih1dimatlem0  34813  dih1dimatlem  34814
  Copyright terms: Public domain W3C validator