Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendocan Structured version   Unicode version

Theorem tendocan 35976
Description: Cancellation law: if the values of two trace-preserving endormorphisms are equal, so are the endormorphisms. Lemma J of [Crawley] p. 118. (Contributed by NM, 21-Jun-2013.)
Hypotheses
Ref Expression
tendocan.b  |-  B  =  ( Base `  K
)
tendocan.h  |-  H  =  ( LHyp `  K
)
tendocan.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendocan.e  |-  E  =  ( ( TEndo `  K
) `  W )
Assertion
Ref Expression
tendocan  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  U  =  V )

Proof of Theorem tendocan
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 simp1l 1020 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  K  e.  HL )
2 simp1r 1021 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  W  e.  H )
3 simp21 1029 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  U  e.  E )
4 simp22 1030 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  V  e.  E )
5 simp11 1026 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
6 simp12 1027 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) ) )
7 simp13l 1111 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  F  e.  T )
8 simp13r 1112 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  F  =/=  (  _I  |`  B ) )
9 simp2 997 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  h  e.  T )
107, 8, 93jca 1176 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T
) )
11 simp3 998 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  h  =/=  (  _I  |`  B ) )
12 tendocan.b . . . . . 6  |-  B  =  ( Base `  K
)
13 tendocan.h . . . . . 6  |-  H  =  ( LHyp `  K
)
14 tendocan.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
15 eqid 2467 . . . . . 6  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
16 tendocan.e . . . . . 6  |-  E  =  ( ( TEndo `  K
) `  W )
1712, 13, 14, 15, 16cdlemj3 35975 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B )  /\  h  e.  T )
)  /\  h  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) )
185, 6, 10, 11, 17syl31anc 1231 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `  F )  =  ( V `  F ) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  /\  h  e.  T  /\  h  =/=  (  _I  |`  B ) )  ->  ( U `  h )  =  ( V `  h ) )
19183exp 1195 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  (
h  e.  T  -> 
( h  =/=  (  _I  |`  B )  -> 
( U `  h
)  =  ( V `
 h ) ) ) )
2019ralrimiv 2879 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  A. h  e.  T  ( h  =/=  (  _I  |`  B )  ->  ( U `  h )  =  ( V `  h ) ) )
2112, 13, 14, 16tendoeq2 35926 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E )  /\  A. h  e.  T  (
h  =/=  (  _I  |`  B )  ->  ( U `  h )  =  ( V `  h ) ) )  ->  U  =  V )
221, 2, 3, 4, 20, 21syl221anc 1239 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( U  e.  E  /\  V  e.  E  /\  ( U `
 F )  =  ( V `  F
) )  /\  ( F  e.  T  /\  F  =/=  (  _I  |`  B ) ) )  ->  U  =  V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817    _I cid 4796    |` cres 5007   ` cfv 5594   Basecbs 14507   HLchlt 34503   LHypclh 35136   LTrncltrn 35253   trLctrl 35310   TEndoctendo 35904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-riotaBAD 34112
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6795  df-2nd 6796  df-undef 7014  df-map 7434  df-poset 15450  df-plt 15462  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-p1 15544  df-lat 15550  df-clat 15612  df-oposet 34329  df-ol 34331  df-oml 34332  df-covers 34419  df-ats 34420  df-atl 34451  df-cvlat 34475  df-hlat 34504  df-llines 34650  df-lplanes 34651  df-lvols 34652  df-lines 34653  df-psubsp 34655  df-pmap 34656  df-padd 34948  df-lhyp 35140  df-laut 35141  df-ldil 35256  df-ltrn 35257  df-trl 35311  df-tendo 35907
This theorem is referenced by:  tendoid0  35977  tendo0mul  35978  tendo0mulr  35979  cdleml3N  36130  cdleml8  36135
  Copyright terms: Public domain W3C validator