Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo1ne0 Structured version   Unicode version

Theorem tendo1ne0 35624
Description: The identity (unity) is not equal to the zero trace-preserving endomorphism. (Contributed by NM, 8-Aug-2013.)
Hypotheses
Ref Expression
tendoid0.b  |-  B  =  ( Base `  K
)
tendoid0.h  |-  H  =  ( LHyp `  K
)
tendoid0.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendoid0.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendoid0.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
tendo1ne0  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  =/=  O )
Distinct variable groups:    B, f    T, f
Allowed substitution hints:    E( f)    H( f)    K( f)    O( f)    W( f)

Proof of Theorem tendo1ne0
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 tendoid0.b . . 3  |-  B  =  ( Base `  K
)
2 tendoid0.h . . 3  |-  H  =  ( LHyp `  K
)
3 tendoid0.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
41, 2, 3cdlemftr0 35364 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. g  e.  T  g  =/=  (  _I  |`  B ) )
5 simp3 998 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  ->  g  =/=  (  _I  |`  B ) )
6 fveq1 5863 . . . . . . . 8  |-  ( (  _I  |`  T )  =  O  ->  ( (  _I  |`  T ) `  g )  =  ( O `  g ) )
76adantl 466 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  (  _I  |`  T )  =  O )  ->  ( (  _I  |`  T ) `  g )  =  ( O `  g ) )
8 simpl2 1000 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  (  _I  |`  T )  =  O )  ->  g  e.  T )
9 fvresi 6085 . . . . . . . 8  |-  ( g  e.  T  ->  (
(  _I  |`  T ) `
 g )  =  g )
108, 9syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  (  _I  |`  T )  =  O )  ->  ( (  _I  |`  T ) `  g )  =  g )
11 tendoid0.o . . . . . . . . 9  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
1211, 1tendo02 35583 . . . . . . . 8  |-  ( g  e.  T  ->  ( O `  g )  =  (  _I  |`  B ) )
138, 12syl 16 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  (  _I  |`  T )  =  O )  ->  ( O `  g )  =  (  _I  |`  B )
)
147, 10, 133eqtr3d 2516 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  /\  (  _I  |`  T )  =  O )  ->  g  =  (  _I  |`  B ) )
1514ex 434 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  ->  ( (  _I  |`  T )  =  O  ->  g  =  (  _I  |`  B )
) )
1615necon3d 2691 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  ->  ( g  =/=  (  _I  |`  B )  ->  (  _I  |`  T )  =/=  O ) )
175, 16mpd 15 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  g  =/=  (  _I  |`  B ) )  ->  (  _I  |`  T )  =/=  O )
1817rexlimdv3a 2957 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( E. g  e.  T  g  =/=  (  _I  |`  B )  -> 
(  _I  |`  T )  =/=  O ) )
194, 18mpd 15 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  T )  =/=  O )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   E.wrex 2815    |-> cmpt 4505    _I cid 4790    |` cres 5001   ` cfv 5586   Basecbs 14486   HLchlt 34147   LHypclh 34780   LTrncltrn 34897   TEndoctendo 35548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-riotaBAD 33756
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-1st 6781  df-2nd 6782  df-undef 6999  df-map 7419  df-poset 15429  df-plt 15441  df-lub 15457  df-glb 15458  df-join 15459  df-meet 15460  df-p0 15522  df-p1 15523  df-lat 15529  df-clat 15591  df-oposet 33973  df-ol 33975  df-oml 33976  df-covers 34063  df-ats 34064  df-atl 34095  df-cvlat 34119  df-hlat 34148  df-llines 34294  df-lplanes 34295  df-lvols 34296  df-lines 34297  df-psubsp 34299  df-pmap 34300  df-padd 34592  df-lhyp 34784  df-laut 34785  df-ldil 34900  df-ltrn 34901  df-trl 34955
This theorem is referenced by:  cdleml9  35780  erngdvlem4  35787  erng1r  35791  erngdvlem4-rN  35795  dvalveclem  35822  dvheveccl  35909  dihord6apre  36053  dihatlat  36131
  Copyright terms: Public domain W3C validator