Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0pl Structured version   Unicode version

Theorem tendo0pl 35880
Description: Property of the additive identity endormorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendo0.b  |-  B  =  ( Base `  K
)
tendo0.h  |-  H  =  ( LHyp `  K
)
tendo0.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendo0.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendo0.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
tendo0pl.p  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
Assertion
Ref Expression
tendo0pl  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( O P S )  =  S )
Distinct variable groups:    B, f    T, f    t, s, E    T, s, t, f    f, W, s, t
Allowed substitution hints:    B( t, s)    P( t, f, s)    S( t, f, s)    E( f)    H( t, f, s)    K( t, f, s)    O( t, f, s)

Proof of Theorem tendo0pl
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 simpl 457 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( K  e.  HL  /\  W  e.  H ) )
2 tendo0.b . . . . 5  |-  B  =  ( Base `  K
)
3 tendo0.h . . . . 5  |-  H  =  ( LHyp `  K
)
4 tendo0.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
5 tendo0.e . . . . 5  |-  E  =  ( ( TEndo `  K
) `  W )
6 tendo0.o . . . . 5  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
72, 3, 4, 5, 6tendo0cl 35879 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
87adantr 465 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  O  e.  E )
9 simpr 461 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  S  e.  E )
10 tendo0pl.p . . . 4  |-  P  =  ( s  e.  E ,  t  e.  E  |->  ( f  e.  T  |->  ( ( s `  f )  o.  (
t `  f )
) ) )
113, 4, 5, 10tendoplcl 35870 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  O  e.  E  /\  S  e.  E
)  ->  ( O P S )  e.  E
)
121, 8, 9, 11syl3anc 1228 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( O P S )  e.  E
)
13 simpll 753 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
1413, 7syl 16 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  O  e.  E )
15 simplr 754 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  S  e.  E )
16 simpr 461 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  g  e.  T )
1710, 4tendopl2 35866 . . . . 5  |-  ( ( O  e.  E  /\  S  e.  E  /\  g  e.  T )  ->  ( ( O P S ) `  g
)  =  ( ( O `  g )  o.  ( S `  g ) ) )
1814, 15, 16, 17syl3anc 1228 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  (
( O P S ) `  g )  =  ( ( O `
 g )  o.  ( S `  g
) ) )
196, 2tendo02 35876 . . . . . 6  |-  ( g  e.  T  ->  ( O `  g )  =  (  _I  |`  B ) )
2019adantl 466 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  ( O `  g )  =  (  _I  |`  B ) )
2120coeq1d 5169 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  (
( O `  g
)  o.  ( S `
 g ) )  =  ( (  _I  |`  B )  o.  ( S `  g )
) )
223, 4, 5tendocl 35856 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E  /\  g  e.  T
)  ->  ( S `  g )  e.  T
)
23223expa 1196 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  ( S `  g )  e.  T )
242, 3, 4ltrn1o 35213 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( S `  g )  e.  T
)  ->  ( S `  g ) : B -1-1-onto-> B
)
2513, 23, 24syl2anc 661 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  ( S `  g ) : B -1-1-onto-> B )
26 f1of 5821 . . . . 5  |-  ( ( S `  g ) : B -1-1-onto-> B  ->  ( S `  g ) : B --> B )
27 fcoi2 5765 . . . . 5  |-  ( ( S `  g ) : B --> B  -> 
( (  _I  |`  B )  o.  ( S `  g ) )  =  ( S `  g
) )
2825, 26, 273syl 20 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  (
(  _I  |`  B )  o.  ( S `  g ) )  =  ( S `  g
) )
2918, 21, 283eqtrd 2512 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E )  /\  g  e.  T )  ->  (
( O P S ) `  g )  =  ( S `  g ) )
3029ralrimiva 2881 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  A. g  e.  T  ( ( O P S ) `  g )  =  ( S `  g ) )
313, 4, 5tendoeq1 35853 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( O P S )  e.  E  /\  S  e.  E )  /\  A. g  e.  T  (
( O P S ) `  g )  =  ( S `  g ) )  -> 
( O P S )  =  S )
321, 12, 9, 30, 31syl121anc 1233 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  S  e.  E
)  ->  ( O P S )  =  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817    |-> cmpt 4510    _I cid 4795    |` cres 5006    o. ccom 5008   -->wf 5589   -1-1-onto->wf1o 5592   ` cfv 5593  (class class class)co 6294    |-> cmpt2 6296   Basecbs 14502   HLchlt 34440   LHypclh 35073   LTrncltrn 35190   TEndoctendo 35841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-riotaBAD 34049
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4251  df-iun 4332  df-iin 4333  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6255  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-1st 6794  df-2nd 6795  df-undef 7012  df-map 7432  df-poset 15445  df-plt 15457  df-lub 15473  df-glb 15474  df-join 15475  df-meet 15476  df-p0 15538  df-p1 15539  df-lat 15545  df-clat 15607  df-oposet 34266  df-ol 34268  df-oml 34269  df-covers 34356  df-ats 34357  df-atl 34388  df-cvlat 34412  df-hlat 34441  df-llines 34587  df-lplanes 34588  df-lvols 34589  df-lines 34590  df-psubsp 34592  df-pmap 34593  df-padd 34885  df-lhyp 35077  df-laut 35078  df-ldil 35193  df-ltrn 35194  df-trl 35248  df-tendo 35844
This theorem is referenced by:  tendo0plr  35881  erngdvlem1  36077  erngdvlem4  36080  erng0g  36083  erngdvlem1-rN  36085  erngdvlem4-rN  36088  dvh0g  36201  dvhopN  36206  diblss  36260  diblsmopel  36261
  Copyright terms: Public domain W3C validator