Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0cl Structured version   Unicode version

Theorem tendo0cl 34122
Description: The additive identity is a trace-perserving endormorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendo0.b  |-  B  =  ( Base `  K
)
tendo0.h  |-  H  =  ( LHyp `  K
)
tendo0.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendo0.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendo0.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
tendo0cl  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
Distinct variable groups:    B, f    T, f
Allowed substitution hints:    E( f)    H( f)    K( f)    O( f)    W( f)

Proof of Theorem tendo0cl
Dummy variables  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2441 . 2  |-  ( le
`  K )  =  ( le `  K
)
2 tendo0.h . 2  |-  H  =  ( LHyp `  K
)
3 tendo0.t . 2  |-  T  =  ( ( LTrn `  K
) `  W )
4 eqid 2441 . 2  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
5 tendo0.e . 2  |-  E  =  ( ( TEndo `  K
) `  W )
6 id 22 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 tendo0.b . . . . 5  |-  B  =  ( Base `  K
)
87, 2, 3idltrn 33482 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )
98adantr 462 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T
)  ->  (  _I  |`  B )  e.  T
)
10 tendo0.o . . . 4  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
1110tendo0cbv 34118 . . 3  |-  O  =  ( g  e.  T  |->  (  _I  |`  B ) )
129, 11fmptd 5864 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O : T --> T )
137, 2, 3, 5, 10tendo0co2 34120 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  h  e.  T
)  ->  ( O `  ( g  o.  h
) )  =  ( ( O `  g
)  o.  ( O `
 h ) ) )
147, 2, 3, 5, 10, 1, 4tendo0tp 34121 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T
)  ->  ( (
( trL `  K
) `  W ) `  ( O `  g
) ) ( le
`  K ) ( ( ( trL `  K
) `  W ) `  g ) )
151, 2, 3, 4, 5, 6, 12, 13, 14istendod 34094 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761    e. cmpt 4347    _I cid 4627    |` cres 4838   ` cfv 5415   Basecbs 14170   lecple 14241   HLchlt 32683   LHypclh 33316   LTrncltrn 33433   trLctrl 33490   TEndoctendo 34084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-riotaBAD 32292
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-undef 6788  df-map 7212  df-poset 15112  df-plt 15124  df-lub 15140  df-glb 15141  df-join 15142  df-meet 15143  df-p0 15205  df-p1 15206  df-lat 15212  df-clat 15274  df-oposet 32509  df-ol 32511  df-oml 32512  df-covers 32599  df-ats 32600  df-atl 32631  df-cvlat 32655  df-hlat 32684  df-llines 32830  df-lplanes 32831  df-lvols 32832  df-lines 32833  df-psubsp 32835  df-pmap 32836  df-padd 33128  df-lhyp 33320  df-laut 33321  df-ldil 33436  df-ltrn 33437  df-trl 33491  df-tendo 34087
This theorem is referenced by:  tendo0pl  34123  tendo0plr  34124  tendoipl  34129  tendoid0  34157  tendo0mul  34158  tendo0mulr  34159  tendoex  34307  cdleml5N  34312  erngdvlem1  34320  erngdvlem4  34323  erng0g  34326  erngdvlem1-rN  34328  erngdvlem4-rN  34331  dvh0g  34444  dvhopN  34449  dib1dim  34498  dib1dim2  34501  dibss  34502  diblss  34503  diblsmopel  34504  dicn0  34525  cdlemn4  34531  cdlemn4a  34532  cdlemn6  34535  dihopelvalcpre  34581  dihmeetlem4preN  34639  dihatlat  34667  dihatexv  34671
  Copyright terms: Public domain W3C validator