Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0cl Structured version   Unicode version

Theorem tendo0cl 34797
Description: The additive identity is a trace-perserving endormorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendo0.b  |-  B  =  ( Base `  K
)
tendo0.h  |-  H  =  ( LHyp `  K
)
tendo0.t  |-  T  =  ( ( LTrn `  K
) `  W )
tendo0.e  |-  E  =  ( ( TEndo `  K
) `  W )
tendo0.o  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
Assertion
Ref Expression
tendo0cl  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
Distinct variable groups:    B, f    T, f
Allowed substitution hints:    E( f)    H( f)    K( f)    O( f)    W( f)

Proof of Theorem tendo0cl
Dummy variables  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2454 . 2  |-  ( le
`  K )  =  ( le `  K
)
2 tendo0.h . 2  |-  H  =  ( LHyp `  K
)
3 tendo0.t . 2  |-  T  =  ( ( LTrn `  K
) `  W )
4 eqid 2454 . 2  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
5 tendo0.e . 2  |-  E  =  ( ( TEndo `  K
) `  W )
6 id 22 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( K  e.  HL  /\  W  e.  H ) )
7 tendo0.b . . . . 5  |-  B  =  ( Base `  K
)
87, 2, 3idltrn 34157 . . . 4  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  (  _I  |`  B )  e.  T )
98adantr 465 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T
)  ->  (  _I  |`  B )  e.  T
)
10 tendo0.o . . . 4  |-  O  =  ( f  e.  T  |->  (  _I  |`  B ) )
1110tendo0cbv 34793 . . 3  |-  O  =  ( g  e.  T  |->  (  _I  |`  B ) )
129, 11fmptd 5979 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O : T --> T )
137, 2, 3, 5, 10tendo0co2 34795 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T  /\  h  e.  T
)  ->  ( O `  ( g  o.  h
) )  =  ( ( O `  g
)  o.  ( O `
 h ) ) )
147, 2, 3, 5, 10, 1, 4tendo0tp 34796 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  g  e.  T
)  ->  ( (
( trL `  K
) `  W ) `  ( O `  g
) ) ( le
`  K ) ( ( ( trL `  K
) `  W ) `  g ) )
151, 2, 3, 4, 5, 6, 12, 13, 14istendod 34769 1  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  O  e.  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    |-> cmpt 4461    _I cid 4742    |` cres 4953   ` cfv 5529   Basecbs 14296   lecple 14368   HLchlt 33358   LHypclh 33991   LTrncltrn 34108   trLctrl 34165   TEndoctendo 34759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-riotaBAD 32967
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-undef 6905  df-map 7329  df-poset 15239  df-plt 15251  df-lub 15267  df-glb 15268  df-join 15269  df-meet 15270  df-p0 15332  df-p1 15333  df-lat 15339  df-clat 15401  df-oposet 33184  df-ol 33186  df-oml 33187  df-covers 33274  df-ats 33275  df-atl 33306  df-cvlat 33330  df-hlat 33359  df-llines 33505  df-lplanes 33506  df-lvols 33507  df-lines 33508  df-psubsp 33510  df-pmap 33511  df-padd 33803  df-lhyp 33995  df-laut 33996  df-ldil 34111  df-ltrn 34112  df-trl 34166  df-tendo 34762
This theorem is referenced by:  tendo0pl  34798  tendo0plr  34799  tendoipl  34804  tendoid0  34832  tendo0mul  34833  tendo0mulr  34834  tendoex  34982  cdleml5N  34987  erngdvlem1  34995  erngdvlem4  34998  erng0g  35001  erngdvlem1-rN  35003  erngdvlem4-rN  35006  dvh0g  35119  dvhopN  35124  dib1dim  35173  dib1dim2  35176  dibss  35177  diblss  35178  diblsmopel  35179  dicn0  35200  cdlemn4  35206  cdlemn4a  35207  cdlemn6  35210  dihopelvalcpre  35256  dihmeetlem4preN  35314  dihatlat  35342  dihatexv  35346
  Copyright terms: Public domain W3C validator