Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  telescfzgsumlem Structured version   Unicode version

Theorem telescfzgsumlem 30953
Description: Lemma for telescfzgsum 30954 (induction step). (Contributed by AV, 23-Nov-2019.)
Hypotheses
Ref Expression
telescfzgsum.b  |-  B  =  ( Base `  G
)
telescfzgsum.g  |-  ( ph  ->  G  e.  Abel )
telescfzgsum.m  |-  .-  =  ( -g `  G )
Assertion
Ref Expression
telescfzgsumlem  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  (
( G  gsumg  ( i  e.  ( M ... y ) 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  =  ( [_ M  / 
k ]_ C  .-  [_ (
y  +  1 )  /  k ]_ C
)  ->  ( G  gsumg  ( i  e.  ( M ... ( y  +  1 ) )  |->  (
[_ i  /  k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  =  ( [_ M  / 
k ]_ C  .-  [_ (
( y  +  1 )  +  1 )  /  k ]_ C
) ) )
Distinct variable groups:    B, i,
k    C, i    i, G   
i, M, k    .- , i    ph, i    y, i, k
Allowed substitution hints:    ph( y, k)    B( y)    C( y, k)    G( y, k)    M( y)    .- ( y, k)

Proof of Theorem telescfzgsumlem
StepHypRef Expression
1 telescfzgsum.b . . . . 5  |-  B  =  ( Base `  G
)
2 eqid 2451 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
3 telescfzgsum.g . . . . . . . 8  |-  ( ph  ->  G  e.  Abel )
43adantr 465 . . . . . . 7  |-  ( (
ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
)  ->  G  e.  Abel )
5 ablcmn 16396 . . . . . . 7  |-  ( G  e.  Abel  ->  G  e. CMnd
)
64, 5syl 16 . . . . . 6  |-  ( (
ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
)  ->  G  e. CMnd )
76adantl 466 . . . . 5  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  G  e. CMnd )
8 fzfid 11905 . . . . 5  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  ( M ... ( y  +  1 ) )  e. 
Fin )
9 ablgrp 16395 . . . . . . . . 9  |-  ( G  e.  Abel  ->  G  e. 
Grp )
103, 9syl 16 . . . . . . . 8  |-  ( ph  ->  G  e.  Grp )
1110ad2antrl 727 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  G  e.  Grp )
1211adantr 465 . . . . . 6  |-  ( ( ( y  e.  (
ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  /\  i  e.  ( M ... (
y  +  1 ) ) )  ->  G  e.  Grp )
13 fzelp1 11617 . . . . . . 7  |-  ( i  e.  ( M ... ( y  +  1 ) )  ->  i  e.  ( M ... (
( y  +  1 )  +  1 ) ) )
14 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
)  ->  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
)
1514adantl 466 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
)
16 rspcsbela 3806 . . . . . . 7  |-  ( ( i  e.  ( M ... ( ( y  +  1 )  +  1 ) )  /\  A. k  e.  ( M ... ( ( y  +  1 )  +  1 ) ) C  e.  B )  ->  [_ i  /  k ]_ C  e.  B
)
1713, 15, 16syl2anr 478 . . . . . 6  |-  ( ( ( y  e.  (
ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  /\  i  e.  ( M ... (
y  +  1 ) ) )  ->  [_ i  /  k ]_ C  e.  B )
18 fzp1elp1 11619 . . . . . . 7  |-  ( i  e.  ( M ... ( y  +  1 ) )  ->  (
i  +  1 )  e.  ( M ... ( ( y  +  1 )  +  1 ) ) )
19 rspcsbela 3806 . . . . . . 7  |-  ( ( ( i  +  1 )  e.  ( M ... ( ( y  +  1 )  +  1 ) )  /\  A. k  e.  ( M ... ( ( y  +  1 )  +  1 ) ) C  e.  B )  ->  [_ ( i  +  1 )  /  k ]_ C  e.  B )
2018, 15, 19syl2anr 478 . . . . . 6  |-  ( ( ( y  e.  (
ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  /\  i  e.  ( M ... (
y  +  1 ) ) )  ->  [_ (
i  +  1 )  /  k ]_ C  e.  B )
21 telescfzgsum.m . . . . . . 7  |-  .-  =  ( -g `  G )
221, 21grpsubcl 15717 . . . . . 6  |-  ( ( G  e.  Grp  /\  [_ i  /  k ]_ C  e.  B  /\  [_ ( i  +  1 )  /  k ]_ C  e.  B )  ->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
)  e.  B )
2312, 17, 20, 22syl3anc 1219 . . . . 5  |-  ( ( ( y  e.  (
ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  /\  i  e.  ( M ... (
y  +  1 ) ) )  ->  ( [_ i  /  k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
)  e.  B )
24 fzp1disj 11625 . . . . . 6  |-  ( ( M ... y )  i^i  { ( y  +  1 ) } )  =  (/)
2524a1i 11 . . . . 5  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  (
( M ... y
)  i^i  { (
y  +  1 ) } )  =  (/) )
26 fzsuc 11612 . . . . . 6  |-  ( y  e.  ( ZZ>= `  M
)  ->  ( M ... ( y  +  1 ) )  =  ( ( M ... y
)  u.  { ( y  +  1 ) } ) )
2726adantr 465 . . . . 5  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  ( M ... ( y  +  1 ) )  =  ( ( M ... y )  u.  {
( y  +  1 ) } ) )
281, 2, 7, 8, 23, 25, 27gsummptfidmsplit 16537 . . . 4  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  ( G  gsumg  ( i  e.  ( M ... ( y  +  1 ) ) 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  =  ( ( G  gsumg  ( i  e.  ( M ... y )  |->  ( [_ i  /  k ]_ C  .- 
[_ ( i  +  1 )  /  k ]_ C ) ) ) ( +g  `  G
) ( G  gsumg  ( i  e.  { ( y  +  1 ) } 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) ) ) )
2928adantr 465 . . 3  |-  ( ( ( y  e.  (
ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  /\  ( G  gsumg  ( i  e.  ( M ... y ) 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  =  ( [_ M  / 
k ]_ C  .-  [_ (
y  +  1 )  /  k ]_ C
) )  ->  ( G  gsumg  ( i  e.  ( M ... ( y  +  1 ) ) 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  =  ( ( G  gsumg  ( i  e.  ( M ... y )  |->  ( [_ i  /  k ]_ C  .- 
[_ ( i  +  1 )  /  k ]_ C ) ) ) ( +g  `  G
) ( G  gsumg  ( i  e.  { ( y  +  1 ) } 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) ) ) )
30 simpr 461 . . . 4  |-  ( ( ( y  e.  (
ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  /\  ( G  gsumg  ( i  e.  ( M ... y ) 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  =  ( [_ M  / 
k ]_ C  .-  [_ (
y  +  1 )  /  k ]_ C
) )  ->  ( G  gsumg  ( i  e.  ( M ... y ) 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  =  ( [_ M  / 
k ]_ C  .-  [_ (
y  +  1 )  /  k ]_ C
) )
31 grpmnd 15661 . . . . . . . 8  |-  ( G  e.  Grp  ->  G  e.  Mnd )
3210, 31syl 16 . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
3332ad2antrl 727 . . . . . 6  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  G  e.  Mnd )
34 ovex 6218 . . . . . . 7  |-  ( y  +  1 )  e. 
_V
3534a1i 11 . . . . . 6  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  (
y  +  1 )  e.  _V )
36 peano2uz 11012 . . . . . . . . . 10  |-  ( y  e.  ( ZZ>= `  M
)  ->  ( y  +  1 )  e.  ( ZZ>= `  M )
)
37 eluzfz2 11569 . . . . . . . . . 10  |-  ( ( y  +  1 )  e.  ( ZZ>= `  M
)  ->  ( y  +  1 )  e.  ( M ... (
y  +  1 ) ) )
3836, 37syl 16 . . . . . . . . 9  |-  ( y  e.  ( ZZ>= `  M
)  ->  ( y  +  1 )  e.  ( M ... (
y  +  1 ) ) )
39 fzelp1 11617 . . . . . . . . 9  |-  ( ( y  +  1 )  e.  ( M ... ( y  +  1 ) )  ->  (
y  +  1 )  e.  ( M ... ( ( y  +  1 )  +  1 ) ) )
4038, 39syl 16 . . . . . . . 8  |-  ( y  e.  ( ZZ>= `  M
)  ->  ( y  +  1 )  e.  ( M ... (
( y  +  1 )  +  1 ) ) )
41 rspcsbela 3806 . . . . . . . 8  |-  ( ( ( y  +  1 )  e.  ( M ... ( ( y  +  1 )  +  1 ) )  /\  A. k  e.  ( M ... ( ( y  +  1 )  +  1 ) ) C  e.  B )  ->  [_ ( y  +  1 )  /  k ]_ C  e.  B )
4240, 14, 41syl2an 477 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  [_ (
y  +  1 )  /  k ]_ C  e.  B )
43 peano2uz 11012 . . . . . . . . . 10  |-  ( ( y  +  1 )  e.  ( ZZ>= `  M
)  ->  ( (
y  +  1 )  +  1 )  e.  ( ZZ>= `  M )
)
4436, 43syl 16 . . . . . . . . 9  |-  ( y  e.  ( ZZ>= `  M
)  ->  ( (
y  +  1 )  +  1 )  e.  ( ZZ>= `  M )
)
45 eluzfz2 11569 . . . . . . . . 9  |-  ( ( ( y  +  1 )  +  1 )  e.  ( ZZ>= `  M
)  ->  ( (
y  +  1 )  +  1 )  e.  ( M ... (
( y  +  1 )  +  1 ) ) )
4644, 45syl 16 . . . . . . . 8  |-  ( y  e.  ( ZZ>= `  M
)  ->  ( (
y  +  1 )  +  1 )  e.  ( M ... (
( y  +  1 )  +  1 ) ) )
47 rspcsbela 3806 . . . . . . . 8  |-  ( ( ( ( y  +  1 )  +  1 )  e.  ( M ... ( ( y  +  1 )  +  1 ) )  /\  A. k  e.  ( M ... ( ( y  +  1 )  +  1 ) ) C  e.  B )  ->  [_ ( ( y  +  1 )  +  1 )  /  k ]_ C  e.  B )
4846, 14, 47syl2an 477 . . . . . . 7  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  [_ (
( y  +  1 )  +  1 )  /  k ]_ C  e.  B )
491, 21grpsubcl 15717 . . . . . . 7  |-  ( ( G  e.  Grp  /\  [_ ( y  +  1 )  /  k ]_ C  e.  B  /\  [_ ( ( y  +  1 )  +  1 )  /  k ]_ C  e.  B )  ->  ( [_ ( y  +  1 )  / 
k ]_ C  .-  [_ (
( y  +  1 )  +  1 )  /  k ]_ C
)  e.  B )
5011, 42, 48, 49syl3anc 1219 . . . . . 6  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  ( [_ ( y  +  1 )  /  k ]_ C  .-  [_ ( ( y  +  1 )  +  1 )  / 
k ]_ C )  e.  B )
51 csbeq1 3392 . . . . . . . 8  |-  ( i  =  ( y  +  1 )  ->  [_ i  /  k ]_ C  =  [_ ( y  +  1 )  /  k ]_ C )
52 oveq1 6200 . . . . . . . . 9  |-  ( i  =  ( y  +  1 )  ->  (
i  +  1 )  =  ( ( y  +  1 )  +  1 ) )
5352csbeq1d 3396 . . . . . . . 8  |-  ( i  =  ( y  +  1 )  ->  [_ (
i  +  1 )  /  k ]_ C  =  [_ ( ( y  +  1 )  +  1 )  /  k ]_ C )
5451, 53oveq12d 6211 . . . . . . 7  |-  ( i  =  ( y  +  1 )  ->  ( [_ i  /  k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
)  =  ( [_ ( y  +  1 )  /  k ]_ C  .-  [_ ( ( y  +  1 )  +  1 )  / 
k ]_ C ) )
5554adantl 466 . . . . . 6  |-  ( ( ( y  e.  (
ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  /\  i  =  ( y  +  1 ) )  -> 
( [_ i  /  k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
)  =  ( [_ ( y  +  1 )  /  k ]_ C  .-  [_ ( ( y  +  1 )  +  1 )  / 
k ]_ C ) )
561, 33, 35, 50, 55gsumsnd 16564 . . . . 5  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  ( G  gsumg  ( i  e.  {
( y  +  1 ) }  |->  ( [_ i  /  k ]_ C  .- 
[_ ( i  +  1 )  /  k ]_ C ) ) )  =  ( [_ (
y  +  1 )  /  k ]_ C  .- 
[_ ( ( y  +  1 )  +  1 )  /  k ]_ C ) )
5756adantr 465 . . . 4  |-  ( ( ( y  e.  (
ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  /\  ( G  gsumg  ( i  e.  ( M ... y ) 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  =  ( [_ M  / 
k ]_ C  .-  [_ (
y  +  1 )  /  k ]_ C
) )  ->  ( G  gsumg  ( i  e.  {
( y  +  1 ) }  |->  ( [_ i  /  k ]_ C  .- 
[_ ( i  +  1 )  /  k ]_ C ) ) )  =  ( [_ (
y  +  1 )  /  k ]_ C  .- 
[_ ( ( y  +  1 )  +  1 )  /  k ]_ C ) )
5830, 57oveq12d 6211 . . 3  |-  ( ( ( y  e.  (
ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  /\  ( G  gsumg  ( i  e.  ( M ... y ) 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  =  ( [_ M  / 
k ]_ C  .-  [_ (
y  +  1 )  /  k ]_ C
) )  ->  (
( G  gsumg  ( i  e.  ( M ... y ) 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) ) ( +g  `  G ) ( G  gsumg  ( i  e.  {
( y  +  1 ) }  |->  ( [_ i  /  k ]_ C  .- 
[_ ( i  +  1 )  /  k ]_ C ) ) ) )  =  ( (
[_ M  /  k ]_ C  .-  [_ (
y  +  1 )  /  k ]_ C
) ( +g  `  G
) ( [_ (
y  +  1 )  /  k ]_ C  .- 
[_ ( ( y  +  1 )  +  1 )  /  k ]_ C ) ) )
59 eluzfz1 11568 . . . . . . 7  |-  ( ( ( y  +  1 )  +  1 )  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... ( ( y  +  1 )  +  1 ) ) )
6044, 59syl 16 . . . . . 6  |-  ( y  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... ( ( y  +  1 )  +  1 ) ) )
61 rspcsbela 3806 . . . . . 6  |-  ( ( M  e.  ( M ... ( ( y  +  1 )  +  1 ) )  /\  A. k  e.  ( M ... ( ( y  +  1 )  +  1 ) ) C  e.  B )  ->  [_ M  /  k ]_ C  e.  B
)
6260, 14, 61syl2an 477 . . . . 5  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  [_ M  /  k ]_ C  e.  B )
631, 2, 21grpnpncan 15731 . . . . 5  |-  ( ( G  e.  Grp  /\  ( [_ M  /  k ]_ C  e.  B  /\  [_ ( y  +  1 )  /  k ]_ C  e.  B  /\  [_ ( ( y  +  1 )  +  1 )  /  k ]_ C  e.  B
) )  ->  (
( [_ M  /  k ]_ C  .-  [_ (
y  +  1 )  /  k ]_ C
) ( +g  `  G
) ( [_ (
y  +  1 )  /  k ]_ C  .- 
[_ ( ( y  +  1 )  +  1 )  /  k ]_ C ) )  =  ( [_ M  / 
k ]_ C  .-  [_ (
( y  +  1 )  +  1 )  /  k ]_ C
) )
6411, 62, 42, 48, 63syl13anc 1221 . . . 4  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  (
( [_ M  /  k ]_ C  .-  [_ (
y  +  1 )  /  k ]_ C
) ( +g  `  G
) ( [_ (
y  +  1 )  /  k ]_ C  .- 
[_ ( ( y  +  1 )  +  1 )  /  k ]_ C ) )  =  ( [_ M  / 
k ]_ C  .-  [_ (
( y  +  1 )  +  1 )  /  k ]_ C
) )
6564adantr 465 . . 3  |-  ( ( ( y  e.  (
ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  /\  ( G  gsumg  ( i  e.  ( M ... y ) 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  =  ( [_ M  / 
k ]_ C  .-  [_ (
y  +  1 )  /  k ]_ C
) )  ->  (
( [_ M  /  k ]_ C  .-  [_ (
y  +  1 )  /  k ]_ C
) ( +g  `  G
) ( [_ (
y  +  1 )  /  k ]_ C  .- 
[_ ( ( y  +  1 )  +  1 )  /  k ]_ C ) )  =  ( [_ M  / 
k ]_ C  .-  [_ (
( y  +  1 )  +  1 )  /  k ]_ C
) )
6629, 58, 653eqtrd 2496 . 2  |-  ( ( ( y  e.  (
ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  /\  ( G  gsumg  ( i  e.  ( M ... y ) 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  =  ( [_ M  / 
k ]_ C  .-  [_ (
y  +  1 )  /  k ]_ C
) )  ->  ( G  gsumg  ( i  e.  ( M ... ( y  +  1 ) ) 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  =  ( [_ M  / 
k ]_ C  .-  [_ (
( y  +  1 )  +  1 )  /  k ]_ C
) )
6766ex 434 1  |-  ( ( y  e.  ( ZZ>= `  M )  /\  ( ph  /\  A. k  e.  ( M ... (
( y  +  1 )  +  1 ) ) C  e.  B
) )  ->  (
( G  gsumg  ( i  e.  ( M ... y ) 
|->  ( [_ i  / 
k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  =  ( [_ M  / 
k ]_ C  .-  [_ (
y  +  1 )  /  k ]_ C
)  ->  ( G  gsumg  ( i  e.  ( M ... ( y  +  1 ) )  |->  (
[_ i  /  k ]_ C  .-  [_ (
i  +  1 )  /  k ]_ C
) ) )  =  ( [_ M  / 
k ]_ C  .-  [_ (
( y  +  1 )  +  1 )  /  k ]_ C
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   _Vcvv 3071   [_csb 3389    u. cun 3427    i^i cin 3428   (/)c0 3738   {csn 3978    |-> cmpt 4451   ` cfv 5519  (class class class)co 6193   1c1 9387    + caddc 9389   ZZ>=cuz 10965   ...cfz 11547   Basecbs 14285   +g cplusg 14349    gsumg cgsu 14490   Mndcmnd 15520   Grpcgrp 15521   -gcsg 15524  CMndccmn 16390   Abelcabel 16391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-inf2 7951  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-iin 4275  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-se 4781  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-isom 5528  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-of 6423  df-om 6580  df-1st 6680  df-2nd 6681  df-supp 6794  df-recs 6935  df-rdg 6969  df-1o 7023  df-oadd 7027  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-fsupp 7725  df-oi 7828  df-card 8213  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-nn 10427  df-2 10484  df-n0 10684  df-z 10751  df-uz 10966  df-fz 11548  df-fzo 11659  df-seq 11917  df-hash 12214  df-ndx 14288  df-slot 14289  df-base 14290  df-sets 14291  df-ress 14292  df-plusg 14362  df-0g 14491  df-gsum 14492  df-mre 14635  df-mrc 14636  df-acs 14638  df-mnd 15526  df-submnd 15576  df-grp 15656  df-minusg 15657  df-sbg 15658  df-mulg 15659  df-cntz 15946  df-cmn 16392  df-abl 16393
This theorem is referenced by:  telescfzgsum  30954
  Copyright terms: Public domain W3C validator