MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tcrank Structured version   Unicode version

Theorem tcrank 8302
Description: This theorem expresses two different facts from the two subset implications in this equality. In the forward direction, it says that the transitive closure has members of every rank below  A. Stated another way, to construct a set at a given rank, you have to climb the entire hierarchy of ordinals below  ( rank `  A ), constructing at least one set at each level in order to move up the ranks. In the reverse direction, it says that every member of  ( TC `  A ) has a rank below the rank of  A, since intuitively it contains only the members of  A and the members of those and so on, but nothing "bigger" than  A. (Contributed by Mario Carneiro, 23-Jun-2013.)
Assertion
Ref Expression
tcrank  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  =  ( rank " ( TC `  A ) ) )

Proof of Theorem tcrank
Dummy variables  x  y  z  w  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankwflemb 8211 . . 3  |-  ( A  e.  U. ( R1
" On )  <->  E. y  e.  On  A  e.  ( R1 `  suc  y
) )
2 suceloni 6632 . . . . 5  |-  ( y  e.  On  ->  suc  y  e.  On )
3 fveq2 5866 . . . . . . . 8  |-  ( x  =  y  ->  ( R1 `  x )  =  ( R1 `  y
) )
43raleqdv 3064 . . . . . . 7  |-  ( x  =  y  ->  ( A. z  e.  ( R1 `  x ) (
rank `  z )  C_  ( rank " ( TC `  z ) )  <->  A. z  e.  ( R1 `  y ) (
rank `  z )  C_  ( rank " ( TC `  z ) ) ) )
5 fveq2 5866 . . . . . . . . 9  |-  ( z  =  u  ->  ( rank `  z )  =  ( rank `  u
) )
6 fveq2 5866 . . . . . . . . . 10  |-  ( z  =  u  ->  ( TC `  z )  =  ( TC `  u
) )
76imaeq2d 5337 . . . . . . . . 9  |-  ( z  =  u  ->  ( rank " ( TC `  z ) )  =  ( rank " ( TC `  u ) ) )
85, 7sseq12d 3533 . . . . . . . 8  |-  ( z  =  u  ->  (
( rank `  z )  C_  ( rank " ( TC `  z ) )  <-> 
( rank `  u )  C_  ( rank " ( TC `  u ) ) ) )
98cbvralv 3088 . . . . . . 7  |-  ( A. z  e.  ( R1 `  y ) ( rank `  z )  C_  ( rank " ( TC `  z ) )  <->  A. u  e.  ( R1 `  y
) ( rank `  u
)  C_  ( rank " ( TC `  u
) ) )
104, 9syl6bb 261 . . . . . 6  |-  ( x  =  y  ->  ( A. z  e.  ( R1 `  x ) (
rank `  z )  C_  ( rank " ( TC `  z ) )  <->  A. u  e.  ( R1 `  y ) (
rank `  u )  C_  ( rank " ( TC `  u ) ) ) )
11 fveq2 5866 . . . . . . 7  |-  ( x  =  suc  y  -> 
( R1 `  x
)  =  ( R1
`  suc  y )
)
1211raleqdv 3064 . . . . . 6  |-  ( x  =  suc  y  -> 
( A. z  e.  ( R1 `  x
) ( rank `  z
)  C_  ( rank " ( TC `  z
) )  <->  A. z  e.  ( R1 `  suc  y ) ( rank `  z )  C_  ( rank " ( TC `  z ) ) ) )
13 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  A. u  e.  ( R1 `  y ) (
rank `  u )  C_  ( rank " ( TC `  u ) ) )  /\  ( z  e.  ( R1 `  x )  /\  w  e.  ( rank `  z
) ) )  -> 
( z  e.  ( R1 `  x )  /\  w  e.  (
rank `  z )
) )
14 simprl 755 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  A. u  e.  ( R1 `  y ) (
rank `  u )  C_  ( rank " ( TC `  u ) ) )  /\  ( z  e.  ( R1 `  x )  /\  w  e.  ( rank `  z
) ) )  -> 
z  e.  ( R1
`  x ) )
15 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  A. u  e.  ( R1 `  y ) (
rank `  u )  C_  ( rank " ( TC `  u ) ) )  /\  ( z  e.  ( R1 `  x )  /\  w  e.  ( rank `  z
) ) )  ->  A. y  e.  x  A. u  e.  ( R1 `  y ) (
rank `  u )  C_  ( rank " ( TC `  u ) ) )
16 rankr1ai 8216 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( R1 `  x )  ->  ( rank `  z )  e.  x )
17 fveq2 5866 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( rank `  z
)  ->  ( R1 `  y )  =  ( R1 `  ( rank `  z ) ) )
1817raleqdv 3064 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( rank `  z
)  ->  ( A. u  e.  ( R1 `  y ) ( rank `  u )  C_  ( rank " ( TC `  u ) )  <->  A. u  e.  ( R1 `  ( rank `  z ) ) ( rank `  u
)  C_  ( rank " ( TC `  u
) ) ) )
1918rspcv 3210 . . . . . . . . . . . . . . . 16  |-  ( (
rank `  z )  e.  x  ->  ( A. y  e.  x  A. u  e.  ( R1 `  y ) ( rank `  u )  C_  ( rank " ( TC `  u ) )  ->  A. u  e.  ( R1 `  ( rank `  z
) ) ( rank `  u )  C_  ( rank " ( TC `  u ) ) ) )
2016, 19syl 16 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( R1 `  x )  ->  ( A. y  e.  x  A. u  e.  ( R1 `  y ) (
rank `  u )  C_  ( rank " ( TC `  u ) )  ->  A. u  e.  ( R1 `  ( rank `  z ) ) (
rank `  u )  C_  ( rank " ( TC `  u ) ) ) )
21 r1elwf 8214 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( R1 `  x )  ->  z  e.  U. ( R1 " On ) )
22 r1rankidb 8222 . . . . . . . . . . . . . . . 16  |-  ( z  e.  U. ( R1
" On )  -> 
z  C_  ( R1 `  ( rank `  z
) ) )
23 ssralv 3564 . . . . . . . . . . . . . . . 16  |-  ( z 
C_  ( R1 `  ( rank `  z )
)  ->  ( A. u  e.  ( R1 `  ( rank `  z
) ) ( rank `  u )  C_  ( rank " ( TC `  u ) )  ->  A. u  e.  z 
( rank `  u )  C_  ( rank " ( TC `  u ) ) ) )
2421, 22, 233syl 20 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( R1 `  x )  ->  ( A. u  e.  ( R1 `  ( rank `  z
) ) ( rank `  u )  C_  ( rank " ( TC `  u ) )  ->  A. u  e.  z 
( rank `  u )  C_  ( rank " ( TC `  u ) ) ) )
2520, 24syld 44 . . . . . . . . . . . . . 14  |-  ( z  e.  ( R1 `  x )  ->  ( A. y  e.  x  A. u  e.  ( R1 `  y ) (
rank `  u )  C_  ( rank " ( TC `  u ) )  ->  A. u  e.  z  ( rank `  u
)  C_  ( rank " ( TC `  u
) ) ) )
2614, 15, 25sylc 60 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  A. u  e.  ( R1 `  y ) (
rank `  u )  C_  ( rank " ( TC `  u ) ) )  /\  ( z  e.  ( R1 `  x )  /\  w  e.  ( rank `  z
) ) )  ->  A. u  e.  z 
( rank `  u )  C_  ( rank " ( TC `  u ) ) )
27 rankval3b 8244 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  U. ( R1
" On )  -> 
( rank `  z )  =  |^| { x  e.  On  |  A. u  e.  z  ( rank `  u )  e.  x } )
2827eleq2d 2537 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  U. ( R1
" On )  -> 
( w  e.  (
rank `  z )  <->  w  e.  |^| { x  e.  On  |  A. u  e.  z  ( rank `  u )  e.  x } ) )
2928biimpd 207 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  U. ( R1
" On )  -> 
( w  e.  (
rank `  z )  ->  w  e.  |^| { x  e.  On  |  A. u  e.  z  ( rank `  u )  e.  x } ) )
30 rankon 8213 . . . . . . . . . . . . . . . . . . . 20  |-  ( rank `  z )  e.  On
3130oneli 4985 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  ( rank `  z
)  ->  w  e.  On )
32 eleq2 2540 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  w  ->  (
( rank `  u )  e.  x  <->  ( rank `  u
)  e.  w ) )
3332ralbidv 2903 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  w  ->  ( A. u  e.  z 
( rank `  u )  e.  x  <->  A. u  e.  z  ( rank `  u
)  e.  w ) )
3433onnminsb 6623 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  On  ->  (
w  e.  |^| { x  e.  On  |  A. u  e.  z  ( rank `  u )  e.  x }  ->  -.  A. u  e.  z  ( rank `  u )  e.  w
) )
3531, 34syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ( rank `  z
)  ->  ( w  e.  |^| { x  e.  On  |  A. u  e.  z  ( rank `  u )  e.  x }  ->  -.  A. u  e.  z  ( rank `  u )  e.  w
) )
3629, 35sylcom 29 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  U. ( R1
" On )  -> 
( w  e.  (
rank `  z )  ->  -.  A. u  e.  z  ( rank `  u
)  e.  w ) )
3721, 36syl 16 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( R1 `  x )  ->  (
w  e.  ( rank `  z )  ->  -.  A. u  e.  z  (
rank `  u )  e.  w ) )
3837imp 429 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ( R1
`  x )  /\  w  e.  ( rank `  z ) )  ->  -.  A. u  e.  z  ( rank `  u
)  e.  w )
39 rexnal 2912 . . . . . . . . . . . . . . 15  |-  ( E. u  e.  z  -.  ( rank `  u
)  e.  w  <->  -.  A. u  e.  z  ( rank `  u )  e.  w
)
4038, 39sylibr 212 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( R1
`  x )  /\  w  e.  ( rank `  z ) )  ->  E. u  e.  z  -.  ( rank `  u
)  e.  w )
4140adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  A. u  e.  ( R1 `  y ) (
rank `  u )  C_  ( rank " ( TC `  u ) ) )  /\  ( z  e.  ( R1 `  x )  /\  w  e.  ( rank `  z
) ) )  ->  E. u  e.  z  -.  ( rank `  u
)  e.  w )
42 r19.29 2997 . . . . . . . . . . . . 13  |-  ( ( A. u  e.  z  ( rank `  u
)  C_  ( rank " ( TC `  u
) )  /\  E. u  e.  z  -.  ( rank `  u )  e.  w )  ->  E. u  e.  z  ( ( rank `  u )  C_  ( rank " ( TC
`  u ) )  /\  -.  ( rank `  u )  e.  w
) )
4326, 41, 42syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  A. u  e.  ( R1 `  y ) (
rank `  u )  C_  ( rank " ( TC `  u ) ) )  /\  ( z  e.  ( R1 `  x )  /\  w  e.  ( rank `  z
) ) )  ->  E. u  e.  z 
( ( rank `  u
)  C_  ( rank " ( TC `  u
) )  /\  -.  ( rank `  u )  e.  w ) )
44 simp2 997 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  ( R1 `  x )  /\  w  e.  (
rank `  z )
)  /\  u  e.  z  /\  ( ( rank `  u )  C_  ( rank " ( TC `  u ) )  /\  -.  ( rank `  u
)  e.  w ) )  ->  u  e.  z )
45 vex 3116 . . . . . . . . . . . . . . . . 17  |-  z  e. 
_V
46 tcid 8170 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  _V  ->  z  C_  ( TC `  z
) )
4745, 46ax-mp 5 . . . . . . . . . . . . . . . 16  |-  z  C_  ( TC `  z )
4847sseli 3500 . . . . . . . . . . . . . . 15  |-  ( u  e.  z  ->  u  e.  ( TC `  z
) )
49 fveq2 5866 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  u  ->  ( rank `  x )  =  ( rank `  u
) )
5049eqeq1d 2469 . . . . . . . . . . . . . . . . 17  |-  ( x  =  u  ->  (
( rank `  x )  =  w  <->  ( rank `  u
)  =  w ) )
5150rspcev 3214 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ( TC
`  z )  /\  ( rank `  u )  =  w )  ->  E. x  e.  ( TC `  z
) ( rank `  x
)  =  w )
5251ex 434 . . . . . . . . . . . . . . 15  |-  ( u  e.  ( TC `  z )  ->  (
( rank `  u )  =  w  ->  E. x  e.  ( TC `  z
) ( rank `  x
)  =  w ) )
5344, 48, 523syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  ( R1 `  x )  /\  w  e.  (
rank `  z )
)  /\  u  e.  z  /\  ( ( rank `  u )  C_  ( rank " ( TC `  u ) )  /\  -.  ( rank `  u
)  e.  w ) )  ->  ( ( rank `  u )  =  w  ->  E. x  e.  ( TC `  z
) ( rank `  x
)  =  w ) )
54 simp3l 1024 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  ( R1 `  x )  /\  w  e.  (
rank `  z )
)  /\  u  e.  z  /\  ( ( rank `  u )  C_  ( rank " ( TC `  u ) )  /\  -.  ( rank `  u
)  e.  w ) )  ->  ( rank `  u )  C_  ( rank " ( TC `  u ) ) )
5554sseld 3503 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  ( R1 `  x )  /\  w  e.  (
rank `  z )
)  /\  u  e.  z  /\  ( ( rank `  u )  C_  ( rank " ( TC `  u ) )  /\  -.  ( rank `  u
)  e.  w ) )  ->  ( w  e.  ( rank `  u
)  ->  w  e.  ( rank " ( TC
`  u ) ) ) )
56 simp1l 1020 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  ( R1 `  x )  /\  w  e.  (
rank `  z )
)  /\  u  e.  z  /\  ( ( rank `  u )  C_  ( rank " ( TC `  u ) )  /\  -.  ( rank `  u
)  e.  w ) )  ->  z  e.  ( R1 `  x ) )
57 rankf 8212 . . . . . . . . . . . . . . . . . . 19  |-  rank : U. ( R1 " On ) --> On
58 ffn 5731 . . . . . . . . . . . . . . . . . . 19  |-  ( rank
: U. ( R1
" On ) --> On 
->  rank  Fn  U. ( R1 " On ) )
5957, 58ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  rank  Fn  U. ( R1 " On )
60 r1tr 8194 . . . . . . . . . . . . . . . . . . . 20  |-  Tr  ( R1 `  x )
61 trel 4547 . . . . . . . . . . . . . . . . . . . 20  |-  ( Tr  ( R1 `  x
)  ->  ( (
u  e.  z  /\  z  e.  ( R1 `  x ) )  ->  u  e.  ( R1 `  x ) ) )
6260, 61ax-mp 5 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  z  /\  z  e.  ( R1 `  x ) )  ->  u  e.  ( R1 `  x ) )
63 r1elwf 8214 . . . . . . . . . . . . . . . . . . 19  |-  ( u  e.  ( R1 `  x )  ->  u  e.  U. ( R1 " On ) )
64 tcwf 8301 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  e.  U. ( R1
" On )  -> 
( TC `  u
)  e.  U. ( R1 " On ) )
65 fvex 5876 . . . . . . . . . . . . . . . . . . . . 21  |-  ( TC
`  u )  e. 
_V
6665r1elss 8224 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( TC `  u )  e.  U. ( R1
" On )  <->  ( TC `  u )  C_  U. ( R1 " On ) )
6764, 66sylib 196 . . . . . . . . . . . . . . . . . . 19  |-  ( u  e.  U. ( R1
" On )  -> 
( TC `  u
)  C_  U. ( R1 " On ) )
6862, 63, 673syl 20 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  z  /\  z  e.  ( R1 `  x ) )  -> 
( TC `  u
)  C_  U. ( R1 " On ) )
69 fvelimab 5923 . . . . . . . . . . . . . . . . . 18  |-  ( (
rank  Fn  U. ( R1 " On )  /\  ( TC `  u ) 
C_  U. ( R1 " On ) )  ->  (
w  e.  ( rank " ( TC `  u ) )  <->  E. x  e.  ( TC `  u
) ( rank `  x
)  =  w ) )
7059, 68, 69sylancr 663 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  z  /\  z  e.  ( R1 `  x ) )  -> 
( w  e.  (
rank " ( TC `  u ) )  <->  E. x  e.  ( TC `  u
) ( rank `  x
)  =  w ) )
7145tcel 8176 . . . . . . . . . . . . . . . . . . 19  |-  ( u  e.  z  ->  ( TC `  u )  C_  ( TC `  z ) )
72 ssrexv 3565 . . . . . . . . . . . . . . . . . . 19  |-  ( ( TC `  u ) 
C_  ( TC `  z )  ->  ( E. x  e.  ( TC `  u ) (
rank `  x )  =  w  ->  E. x  e.  ( TC `  z
) ( rank `  x
)  =  w ) )
7371, 72syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  z  ->  ( E. x  e.  ( TC `  u ) (
rank `  x )  =  w  ->  E. x  e.  ( TC `  z
) ( rank `  x
)  =  w ) )
7473adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  z  /\  z  e.  ( R1 `  x ) )  -> 
( E. x  e.  ( TC `  u
) ( rank `  x
)  =  w  ->  E. x  e.  ( TC `  z ) (
rank `  x )  =  w ) )
7570, 74sylbid 215 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  z  /\  z  e.  ( R1 `  x ) )  -> 
( w  e.  (
rank " ( TC `  u ) )  ->  E. x  e.  ( TC `  z ) (
rank `  x )  =  w ) )
7644, 56, 75syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  ( R1 `  x )  /\  w  e.  (
rank `  z )
)  /\  u  e.  z  /\  ( ( rank `  u )  C_  ( rank " ( TC `  u ) )  /\  -.  ( rank `  u
)  e.  w ) )  ->  ( w  e.  ( rank " ( TC `  u ) )  ->  E. x  e.  ( TC `  z ) ( rank `  x
)  =  w ) )
7755, 76syld 44 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  ( R1 `  x )  /\  w  e.  (
rank `  z )
)  /\  u  e.  z  /\  ( ( rank `  u )  C_  ( rank " ( TC `  u ) )  /\  -.  ( rank `  u
)  e.  w ) )  ->  ( w  e.  ( rank `  u
)  ->  E. x  e.  ( TC `  z
) ( rank `  x
)  =  w ) )
78 rankon 8213 . . . . . . . . . . . . . . . . . . 19  |-  ( rank `  u )  e.  On
79 eloni 4888 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
rank `  u )  e.  On  ->  Ord  ( rank `  u ) )
80 eloni 4888 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  On  ->  Ord  w )
81 ordtri3or 4910 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Ord  ( rank `  u
)  /\  Ord  w )  ->  ( ( rank `  u )  e.  w  \/  ( rank `  u
)  =  w  \/  w  e.  ( rank `  u ) ) )
8279, 80, 81syl2an 477 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( rank `  u
)  e.  On  /\  w  e.  On )  ->  ( ( rank `  u
)  e.  w  \/  ( rank `  u
)  =  w  \/  w  e.  ( rank `  u ) ) )
8378, 31, 82sylancr 663 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ( rank `  z
)  ->  ( ( rank `  u )  e.  w  \/  ( rank `  u )  =  w  \/  w  e.  (
rank `  u )
) )
84 3orass 976 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( rank `  u
)  e.  w  \/  ( rank `  u
)  =  w  \/  w  e.  ( rank `  u ) )  <->  ( ( rank `  u )  e.  w  \/  ( (
rank `  u )  =  w  \/  w  e.  ( rank `  u
) ) ) )
8583, 84sylib 196 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  ( rank `  z
)  ->  ( ( rank `  u )  e.  w  \/  ( (
rank `  u )  =  w  \/  w  e.  ( rank `  u
) ) ) )
8685orcanai 911 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  ( rank `  z )  /\  -.  ( rank `  u )  e.  w )  ->  (
( rank `  u )  =  w  \/  w  e.  ( rank `  u
) ) )
8786ad2ant2l 745 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  ( R1 `  x )  /\  w  e.  (
rank `  z )
)  /\  ( ( rank `  u )  C_  ( rank " ( TC
`  u ) )  /\  -.  ( rank `  u )  e.  w
) )  ->  (
( rank `  u )  =  w  \/  w  e.  ( rank `  u
) ) )
88873adant2 1015 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  ( R1 `  x )  /\  w  e.  (
rank `  z )
)  /\  u  e.  z  /\  ( ( rank `  u )  C_  ( rank " ( TC `  u ) )  /\  -.  ( rank `  u
)  e.  w ) )  ->  ( ( rank `  u )  =  w  \/  w  e.  ( rank `  u
) ) )
8953, 77, 88mpjaod 381 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  ( R1 `  x )  /\  w  e.  (
rank `  z )
)  /\  u  e.  z  /\  ( ( rank `  u )  C_  ( rank " ( TC `  u ) )  /\  -.  ( rank `  u
)  e.  w ) )  ->  E. x  e.  ( TC `  z
) ( rank `  x
)  =  w )
9089rexlimdv3a 2957 . . . . . . . . . . . 12  |-  ( ( z  e.  ( R1
`  x )  /\  w  e.  ( rank `  z ) )  -> 
( E. u  e.  z  ( ( rank `  u )  C_  ( rank " ( TC `  u ) )  /\  -.  ( rank `  u
)  e.  w )  ->  E. x  e.  ( TC `  z ) ( rank `  x
)  =  w ) )
9113, 43, 90sylc 60 . . . . . . . . . . 11  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  A. u  e.  ( R1 `  y ) (
rank `  u )  C_  ( rank " ( TC `  u ) ) )  /\  ( z  e.  ( R1 `  x )  /\  w  e.  ( rank `  z
) ) )  ->  E. x  e.  ( TC `  z ) (
rank `  x )  =  w )
9291expr 615 . . . . . . . . . 10  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  A. u  e.  ( R1 `  y ) (
rank `  u )  C_  ( rank " ( TC `  u ) ) )  /\  z  e.  ( R1 `  x
) )  ->  (
w  e.  ( rank `  z )  ->  E. x  e.  ( TC `  z
) ( rank `  x
)  =  w ) )
93 tcwf 8301 . . . . . . . . . . . . 13  |-  ( z  e.  U. ( R1
" On )  -> 
( TC `  z
)  e.  U. ( R1 " On ) )
94 r1elssi 8223 . . . . . . . . . . . . . 14  |-  ( ( TC `  z )  e.  U. ( R1
" On )  -> 
( TC `  z
)  C_  U. ( R1 " On ) )
95 fvelimab 5923 . . . . . . . . . . . . . 14  |-  ( (
rank  Fn  U. ( R1 " On )  /\  ( TC `  z ) 
C_  U. ( R1 " On ) )  ->  (
w  e.  ( rank " ( TC `  z ) )  <->  E. x  e.  ( TC `  z
) ( rank `  x
)  =  w ) )
9694, 95sylan2 474 . . . . . . . . . . . . 13  |-  ( (
rank  Fn  U. ( R1 " On )  /\  ( TC `  z )  e.  U. ( R1
" On ) )  ->  ( w  e.  ( rank " ( TC `  z ) )  <->  E. x  e.  ( TC `  z ) (
rank `  x )  =  w ) )
9759, 93, 96sylancr 663 . . . . . . . . . . . 12  |-  ( z  e.  U. ( R1
" On )  -> 
( w  e.  (
rank " ( TC `  z ) )  <->  E. x  e.  ( TC `  z
) ( rank `  x
)  =  w ) )
9821, 97syl 16 . . . . . . . . . . 11  |-  ( z  e.  ( R1 `  x )  ->  (
w  e.  ( rank " ( TC `  z ) )  <->  E. x  e.  ( TC `  z
) ( rank `  x
)  =  w ) )
9998adantl 466 . . . . . . . . . 10  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  A. u  e.  ( R1 `  y ) (
rank `  u )  C_  ( rank " ( TC `  u ) ) )  /\  z  e.  ( R1 `  x
) )  ->  (
w  e.  ( rank " ( TC `  z ) )  <->  E. x  e.  ( TC `  z
) ( rank `  x
)  =  w ) )
10092, 99sylibrd 234 . . . . . . . . 9  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  A. u  e.  ( R1 `  y ) (
rank `  u )  C_  ( rank " ( TC `  u ) ) )  /\  z  e.  ( R1 `  x
) )  ->  (
w  e.  ( rank `  z )  ->  w  e.  ( rank " ( TC `  z ) ) ) )
101100ssrdv 3510 . . . . . . . 8  |-  ( ( ( x  e.  On  /\ 
A. y  e.  x  A. u  e.  ( R1 `  y ) (
rank `  u )  C_  ( rank " ( TC `  u ) ) )  /\  z  e.  ( R1 `  x
) )  ->  ( rank `  z )  C_  ( rank " ( TC
`  z ) ) )
102101ralrimiva 2878 . . . . . . 7  |-  ( ( x  e.  On  /\  A. y  e.  x  A. u  e.  ( R1 `  y ) ( rank `  u )  C_  ( rank " ( TC `  u ) ) )  ->  A. z  e.  ( R1 `  x ) ( rank `  z
)  C_  ( rank " ( TC `  z
) ) )
103102ex 434 . . . . . 6  |-  ( x  e.  On  ->  ( A. y  e.  x  A. u  e.  ( R1 `  y ) (
rank `  u )  C_  ( rank " ( TC `  u ) )  ->  A. z  e.  ( R1 `  x ) ( rank `  z
)  C_  ( rank " ( TC `  z
) ) ) )
10410, 12, 103tfis3 6676 . . . . 5  |-  ( suc  y  e.  On  ->  A. z  e.  ( R1
`  suc  y )
( rank `  z )  C_  ( rank " ( TC `  z ) ) )
105 fveq2 5866 . . . . . . 7  |-  ( z  =  A  ->  ( rank `  z )  =  ( rank `  A
) )
106 fveq2 5866 . . . . . . . 8  |-  ( z  =  A  ->  ( TC `  z )  =  ( TC `  A
) )
107106imaeq2d 5337 . . . . . . 7  |-  ( z  =  A  ->  ( rank " ( TC `  z ) )  =  ( rank " ( TC `  A ) ) )
108105, 107sseq12d 3533 . . . . . 6  |-  ( z  =  A  ->  (
( rank `  z )  C_  ( rank " ( TC `  z ) )  <-> 
( rank `  A )  C_  ( rank " ( TC `  A ) ) ) )
109108rspccv 3211 . . . . 5  |-  ( A. z  e.  ( R1 ` 
suc  y ) (
rank `  z )  C_  ( rank " ( TC `  z ) )  ->  ( A  e.  ( R1 `  suc  y )  ->  ( rank `  A )  C_  ( rank " ( TC
`  A ) ) ) )
1102, 104, 1093syl 20 . . . 4  |-  ( y  e.  On  ->  ( A  e.  ( R1 ` 
suc  y )  -> 
( rank `  A )  C_  ( rank " ( TC `  A ) ) ) )
111110rexlimiv 2949 . . 3  |-  ( E. y  e.  On  A  e.  ( R1 `  suc  y )  ->  ( rank `  A )  C_  ( rank " ( TC
`  A ) ) )
1121, 111sylbi 195 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  C_  ( rank " ( TC `  A ) ) )
113 tcvalg 8169 . . . 4  |-  ( A  e.  U. ( R1
" On )  -> 
( TC `  A
)  =  |^| { x  |  ( A  C_  x  /\  Tr  x ) } )
114 r1rankidb 8222 . . . . 5  |-  ( A  e.  U. ( R1
" On )  ->  A  C_  ( R1 `  ( rank `  A )
) )
115 r1tr 8194 . . . . 5  |-  Tr  ( R1 `  ( rank `  A
) )
116 fvex 5876 . . . . . . 7  |-  ( R1
`  ( rank `  A
) )  e.  _V
117 sseq2 3526 . . . . . . . 8  |-  ( x  =  ( R1 `  ( rank `  A )
)  ->  ( A  C_  x  <->  A  C_  ( R1
`  ( rank `  A
) ) ) )
118 treq 4546 . . . . . . . 8  |-  ( x  =  ( R1 `  ( rank `  A )
)  ->  ( Tr  x 
<->  Tr  ( R1 `  ( rank `  A )
) ) )
119117, 118anbi12d 710 . . . . . . 7  |-  ( x  =  ( R1 `  ( rank `  A )
)  ->  ( ( A  C_  x  /\  Tr  x )  <->  ( A  C_  ( R1 `  ( rank `  A ) )  /\  Tr  ( R1
`  ( rank `  A
) ) ) ) )
120116, 119elab 3250 . . . . . 6  |-  ( ( R1 `  ( rank `  A ) )  e. 
{ x  |  ( A  C_  x  /\  Tr  x ) }  <->  ( A  C_  ( R1 `  ( rank `  A ) )  /\  Tr  ( R1
`  ( rank `  A
) ) ) )
121 intss1 4297 . . . . . 6  |-  ( ( R1 `  ( rank `  A ) )  e. 
{ x  |  ( A  C_  x  /\  Tr  x ) }  ->  |^|
{ x  |  ( A  C_  x  /\  Tr  x ) }  C_  ( R1 `  ( rank `  A ) ) )
122120, 121sylbir 213 . . . . 5  |-  ( ( A  C_  ( R1 `  ( rank `  A
) )  /\  Tr  ( R1 `  ( rank `  A ) ) )  ->  |^| { x  |  ( A  C_  x  /\  Tr  x ) } 
C_  ( R1 `  ( rank `  A )
) )
123114, 115, 122sylancl 662 . . . 4  |-  ( A  e.  U. ( R1
" On )  ->  |^| { x  |  ( A  C_  x  /\  Tr  x ) }  C_  ( R1 `  ( rank `  A ) ) )
124113, 123eqsstrd 3538 . . 3  |-  ( A  e.  U. ( R1
" On )  -> 
( TC `  A
)  C_  ( R1 `  ( rank `  A
) ) )
125 imass2 5372 . . . 4  |-  ( ( TC `  A ) 
C_  ( R1 `  ( rank `  A )
)  ->  ( rank " ( TC `  A
) )  C_  ( rank " ( R1 `  ( rank `  A )
) ) )
126 ffun 5733 . . . . . . . 8  |-  ( rank
: U. ( R1
" On ) --> On 
->  Fun  rank )
12757, 126ax-mp 5 . . . . . . 7  |-  Fun  rank
128 fvelima 5919 . . . . . . 7  |-  ( ( Fun  rank  /\  x  e.  ( rank " ( R1 `  ( rank `  A
) ) ) )  ->  E. y  e.  ( R1 `  ( rank `  A ) ) (
rank `  y )  =  x )
129127, 128mpan 670 . . . . . 6  |-  ( x  e.  ( rank " ( R1 `  ( rank `  A
) ) )  ->  E. y  e.  ( R1 `  ( rank `  A
) ) ( rank `  y )  =  x )
130 rankr1ai 8216 . . . . . . . 8  |-  ( y  e.  ( R1 `  ( rank `  A )
)  ->  ( rank `  y )  e.  (
rank `  A )
)
131 eleq1 2539 . . . . . . . 8  |-  ( (
rank `  y )  =  x  ->  ( (
rank `  y )  e.  ( rank `  A
)  <->  x  e.  ( rank `  A ) ) )
132130, 131syl5ibcom 220 . . . . . . 7  |-  ( y  e.  ( R1 `  ( rank `  A )
)  ->  ( ( rank `  y )  =  x  ->  x  e.  ( rank `  A )
) )
133132rexlimiv 2949 . . . . . 6  |-  ( E. y  e.  ( R1
`  ( rank `  A
) ) ( rank `  y )  =  x  ->  x  e.  (
rank `  A )
)
134129, 133syl 16 . . . . 5  |-  ( x  e.  ( rank " ( R1 `  ( rank `  A
) ) )  ->  x  e.  ( rank `  A ) )
135134ssriv 3508 . . . 4  |-  ( rank " ( R1 `  ( rank `  A )
) )  C_  ( rank `  A )
136125, 135syl6ss 3516 . . 3  |-  ( ( TC `  A ) 
C_  ( R1 `  ( rank `  A )
)  ->  ( rank " ( TC `  A
) )  C_  ( rank `  A ) )
137124, 136syl 16 . 2  |-  ( A  e.  U. ( R1
" On )  -> 
( rank " ( TC
`  A ) ) 
C_  ( rank `  A
) )
138112, 137eqssd 3521 1  |-  ( A  e.  U. ( R1
" On )  -> 
( rank `  A )  =  ( rank " ( TC `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 972    /\ w3a 973    = wceq 1379    e. wcel 1767   {cab 2452   A.wral 2814   E.wrex 2815   {crab 2818   _Vcvv 3113    C_ wss 3476   U.cuni 4245   |^|cint 4282   Tr wtr 4540   Ord word 4877   Oncon0 4878   suc csuc 4880   "cima 5002   Fun wfun 5582    Fn wfn 5583   -->wf 5584   ` cfv 5588   TCctc 8167   R1cr1 8180   rankcrnk 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-inf2 8058
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-om 6685  df-recs 7042  df-rdg 7076  df-tc 8168  df-r1 8182  df-rank 8183
This theorem is referenced by:  hsmexlem5  8810  grur1  9198
  Copyright terms: Public domain W3C validator